Suppr超能文献

一种用于 ICU 后死亡率预测和生存分析的新型切换状态空间模型。

A Novel Switching State-Space Model for Post-ICU Mortality Prediction and Survival Analysis.

出版信息

IEEE J Biomed Health Inform. 2021 Sep;25(9):3587-3595. doi: 10.1109/JBHI.2021.3068357. Epub 2021 Sep 3.

Abstract

Predicting mortality risk in patients accurately during and after intensive care unit (ICU) stay is an essential component for supporting critical care decision-making. To date, various scoring systems have been designed for survival analysis and mortality prediction by providing risk scores based on patient's vital signs and lab results. However, it is challenging using these universal scores to represent the overall severity level of illness and to look into patient's deterioration leading to high mortality risk during ICU stay. Thus, a close monitoring of the severity level over time during ICU stay is more preferable. In this study, we design a new switching state-space model by correlating patient's condition dynamics in last hours of ICU stay to the risk probabilities in a short time period (1-6 days) after ICU discharge. More specifically, we propose to integrate a cumulative hazard function estimating survival probability into the autoregressive hidden Markov model using time-interval sequential SAPS II scores as features. We demonstrate the significant improvement of mortality prediction comparing to SAPS I, SAPS II, and SOFA scoring systems for the PhysioNet MIMIC II Challenge data.

摘要

准确预测重症监护病房(ICU)住院期间和之后患者的死亡风险是支持重症监护决策的重要组成部分。迄今为止,已经设计了各种评分系统,通过基于患者生命体征和实验室结果提供风险评分来进行生存分析和死亡率预测。然而,使用这些通用评分来表示疾病的整体严重程度,并观察导致 ICU 住院期间高死亡率的患者病情恶化,具有一定挑战性。因此,在 ICU 住院期间,更倾向于密切监测随时间变化的严重程度。在这项研究中,我们通过将 ICU 住院最后几小时的患者病情动态与 ICU 出院后短时间内(1-6 天)的风险概率相关联,设计了一种新的切换状态空间模型。具体来说,我们提出使用时间间隔序列 SAPS II 评分作为特征,将累积风险函数估计生存概率集成到自回归隐马尔可夫模型中。我们证明,与 SAPS I、SAPS II 和 SOFA 评分系统相比,该模型在 PhysioNet MIMIC II 挑战赛数据上的死亡率预测方面有显著的改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验