Wu Chao Ping, Shirley Rachel Benish, Milinovich Alex, Liu Kaiyin, Mireles-Cabodevila Eduardo, Khouli Hassan, Duggal Abhijit, Bhattacharyya Anirban
Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
Intensive Care Med Exp. 2025 Jan 24;13(1):10. doi: 10.1186/s40635-025-00717-z.
The discharge practices from the intensive care unit exhibit heterogeneity and the recognition of eligible patients for discharge is often delayed. Recognizing the importance of safe discharge, which aims to minimize readmission and mortality, we developed a dynamic machine-learning model. The model aims to accurately identify patients ready for discharge, offering a comparison of its effectiveness with physician decisions in terms of safety and discrepancies in discharge readiness assessment.
This retrospective study uses data from patients in the medical ICU from 2015-to-2019 to develop ML models. The models were based on dynamic ICU-readily available features such as hourly vital signs, laboratory results, and interventions and were developed using various ML algorithms. The primary outcome was the hourly prediction of ICU discharge without readmission or death within 72 h post-discharge. These outcomes underwent subsequent validation within a distinct cohort from the year 2020. Additionally, the models' performance was assessed in comparison to physician judgments, with any discrepancies between the two carefully analyzed.
In the 2015-to-2019 cohort, the study included 17,852 unique ICU admissions. The LightGBM model outperformed other algorithms, achieving a AUROC of 0.91 (95%CI 0.9-0.91) and performance was held in the 2020 validation cohort (n = 509) with an AUROC of 0.85 (95%CI 0.84-0.85). The calibration result showed Brier score of 0.254 (95%CI 0.253-0.255). The physician agreed with the models' discharge-readiness prediction in 84.5% of patients. In patients discharged by physicians but not deemed ready by our model, the relative risk of 72-h post-ICU adverse outcomes was 2.32 (95% CI 1.1-4.9). Furthermore, the model predicted patients' readiness for discharge between 5 (IQR: 2-13.5) and 9 (IQR: 3-17) hours earlier in our selected thresholds.
The study underscores the potential of ML models in predicting patient discharge readiness, mirroring physician behavior closely while identifying eligible patients earlier. It also highlights ML models can serve as a promising screening tool to enhance ICU discharge, presenting a pathway toward more efficient and reliable critical care decision-making.
重症监护病房的出院流程存在异质性,符合出院条件的患者往往延迟出院。认识到安全出院的重要性,其目的是尽量减少再入院率和死亡率,我们开发了一种动态机器学习模型。该模型旨在准确识别准备出院的患者,并在安全性和出院准备评估差异方面将其有效性与医生的决策进行比较。
这项回顾性研究使用了2015年至2019年医疗重症监护病房患者的数据来开发机器学习模型。这些模型基于动态的重症监护病房可用特征,如每小时生命体征、实验室检查结果和干预措施,并使用各种机器学习算法进行开发。主要结果是对重症监护病房出院后72小时内无再入院或死亡情况的每小时预测。这些结果在2020年的一个不同队列中进行了后续验证。此外,与医生的判断相比评估了模型的性能,并仔细分析了两者之间的任何差异。
在2015年至2019年的队列中,该研究纳入了17852例独特的重症监护病房入院患者。LightGBM模型优于其他算法,曲线下面积(AUROC)为0.91(95%置信区间0.9 - 0.91),在2020年验证队列(n = 509)中的性能保持不变,AUROC为0.85(95%置信区间0.84 - 0.85)。校准结果显示布里尔分数为0.254(95%置信区间0.253 - 0.255)。医生在84.5%的患者中与模型的出院准备预测意见一致。在医生出院但我们的模型认为未准备好的患者中,重症监护病房出院后72小时不良结局的相对风险为2.32(95%置信区间1.1 - 4.9)。此外,在我们选定的阈值下,该模型比医生提前5(四分位间距:2 - 13.5)至9(四分位间距:3 - 17)小时预测患者的出院准备情况。
该研究强调了机器学习模型在预测患者出院准备情况方面的潜力,在密切反映医生行为的同时更早地识别符合条件的患者。它还强调了机器学习模型可作为一种有前景的筛查工具来改善重症监护病房的出院流程,为更高效、可靠的重症监护决策提供了一条途径。