Suppr超能文献

一个用于快速定量分析不同油菜籽化学类型种子硫代葡萄糖苷含量和组成的综合可见-近红外光谱方程。

A comprehensive Vis-NIRS equation for rapid quantification of seed glucosinolate content and composition across diverse Brassica oilseed chemotypes.

作者信息

Gohain Bornali, Kumar Pawan, Malhotra Bhanu, Augustine Rehna, Pradhan Akshay K, Bisht Naveen C

机构信息

National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.

Centre for Plant Biotechnology & Molecular Biology, Kerala Agricultural University, 680656, India.

出版信息

Food Chem. 2021 Aug 30;354:129527. doi: 10.1016/j.foodchem.2021.129527. Epub 2021 Mar 11.

Abstract

The globally cultivated Brassica crops contain high deliverable concentrations of health-promoting glucosinolates. Development of a Visible-Near InfraRed Spectroscopy (Vis-NIRS) calibration to profile different glucosinolate components from 641 diverse Brassica juncea chemotypes was attempted in this study. Principal component analysis of HPLC-determined glucosinolates established the distinctiveness of four B. juncea populations used. Subsequently, modified partial least square regression based population-specific and combined Vis-NIRS models were developed, wherein the combined model exhibited higher coefficient of determination (R; 0.81-0.97) for eight glucosinolates and higher ratio of prediction determination (RPD; 2.42-5.35) for seven glucosinolates in B. juncea populations. Furthermore, range error ratio (RER > 4) for twelve and RER > 10 for eight glucosinolates make the combined model acceptable for screening and quality control. The model also provided excellent prediction for aliphatic glucosinolates in four oilseed Brassica species. Overall, our work highlights the potential of Vis-NIR spectroscopy in estimating glucosinolate content in the economically important Brassica oilseeds.

摘要

全球种植的芸苔属作物含有高含量可提取的具有促进健康作用的硫代葡萄糖苷。本研究尝试开发一种可见 - 近红外光谱(Vis-NIRS)校准方法,以分析641种不同芥菜型油菜化学型中的不同硫代葡萄糖苷成分。通过高效液相色谱法测定硫代葡萄糖苷,对其进行主成分分析,确定了所使用的四个芥菜型油菜群体的独特性。随后,开发了基于改进偏最小二乘回归的群体特异性和组合Vis-NIRS模型,其中组合模型对芥菜型油菜群体中的八种硫代葡萄糖苷表现出更高的决定系数(R;0.81 - 0.97),对七种硫代葡萄糖苷表现出更高的预测决定系数比(RPD;2.42 - 5.35)。此外,对于十二种硫代葡萄糖苷的范围误差比(RER > 4)和对于八种硫代葡萄糖苷的RER > 10,使得组合模型可用于筛选和质量控制。该模型对四种油菜籽中的脂肪族硫代葡萄糖苷也提供了出色的预测。总体而言,我们的工作突出了可见 - 近红外光谱在估计经济上重要的油菜籽中硫代葡萄糖苷含量方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验