Suppr超能文献

V-氮酶双齿配体的量子细化研究及 CO 抑制态钼氮酶的质子化状态。

Quantum-refinement studies of the bidentate ligand of V‑nitrogenase and the protonation state of CO-inhibited Mo‑nitrogenase.

机构信息

Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden.

European Spallation Source ESS ERIC, Lund, Sweden.

出版信息

J Inorg Biochem. 2021 Jun;219:111426. doi: 10.1016/j.jinorgbio.2021.111426. Epub 2021 Mar 13.

Abstract

Nitrogenase is the only enzyme that can cleave the triple bond in N, making nitrogen available to plants (although the enzyme itself is strictly microbial). It has been studied extensively with both experimental and computational methods, but many details of the reaction mechanism are still unclear. X-ray crystallography is the main source of structural information for biomacromolecules, but it has problems to discern hydrogen atoms or to distinguish between elements with the same number of electrons. These problems can sometimes be alleviated by introducing quantum chemical calculations in the refinement, providing information about the ideal structure (in the same way as the empirical restraints used in standard crystallographic refinement) and comparing different interpretations of the structure with normal crystallographic and quantum mechanical quality measures. We have performed such quantum-refinement calculations to address two important issues for nitrogenase. First, we show that the bidentate ligand of the active-site FeV cluster in V‑nitrogenase is carbonate, rather than bicarbonate or nitrate. Second, we study the CO-inhibited structure of Mo‑nitrogenase. CO binds to a reduced and protonated state of the enzyme by replacing one of the sulfide ions (S2B) in the active-site FeMo cluster. We examined if it is possible to deduce from the crystal structure the location of the protons. Our results indicates that the crystal structure is best modelled as fully deprotonated.

摘要

固氮酶是唯一能够切断 N 中三重键的酶,使氮能够被植物利用(尽管该酶本身严格来说是微生物)。它已经通过实验和计算方法进行了广泛的研究,但反应机制的许多细节仍不清楚。X 射线晶体学是生物大分子结构信息的主要来源,但它在辨别氢原子或区分具有相同电子数的元素方面存在问题。这些问题有时可以通过在精修中引入量子化学计算来缓解,提供关于理想结构的信息(与标准晶体学精修中使用的经验约束相同),并比较不同结构解释与正常晶体学和量子力学质量度量的关系。我们已经进行了这样的量子精修计算,以解决固氮酶的两个重要问题。首先,我们表明 V-固氮酶活性位点 FeV 簇的双齿配体是碳酸盐,而不是碳酸氢盐或硝酸盐。其次,我们研究了 Mo-固氮酶的 CO 抑制结构。CO 通过取代活性位点 FeMo 簇中的一个硫离子(S2B),与酶的还原和质子化状态结合。我们检查了是否可以从晶体结构中推断出质子的位置。我们的结果表明,最好将晶体结构建模为完全去质子化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验