Suppr超能文献

制定“准备情况自我评估(RESEA)指南”以协助低收入和中等收入国家建立安全且可持续的放射治疗服务:一项务实的序贯混合定性方法项目

Development of the 'REadiness SElf-assessment (RESEA) guide' to assist low and middle-income countries with establishing safe and sustainable radiotherapy services: a pragmatic sequential mixed qualitative methods project.

作者信息

Donkor Andrew, Luckett Tim, Aranda Sanchia, Vanderpuye Verna, Phillips Jane L

机构信息

IMPACCT (Improving Palliative, Aged and Chronic Care through Clinical Research and Translation), Faculty of Health, University of Technology Sydney, Sydney, NSW, Australia.

National Centre for Radiotherapy, Korle-Bu Teaching Hospital, Accra, Ghana.

出版信息

BMC Health Serv Res. 2021 Mar 23;21(1):268. doi: 10.1186/s12913-021-06274-x.

Abstract

BACKGROUND

Improving access to radiotherapy services in low and middle-income countries (LMICs) is challenging. Many LMICs' radiotherapy initiatives fail because of multi-faceted barriers leading to significant wastage of scarce resources. Supporting LMICs to self-assess their readiness for establishing radiotherapy services will help to improve cancer outcomes by ensuring safe, effective and sustainable evidenced-based cancer care. The aim of the study was to develop practical guidance for LMICs on self-assessing their readiness to establish safe and sustainable radiotherapy services.

METHODS

The Access to Radiotherapy for Cancer treatment (ARC) Project was a pragmatic sequential mixed qualitative methods design underpinned by the World Health Organisation's 'Innovative Care for Chronic Conditions Framework' and 'Health System Building Blocks Framework for Action' conceptual frameworks. This paper reports on the process of overall data integration and meta-inference from previously published components comprising a systematic review and two-part qualitative study (semi-structured interviews and a participant validation process). The meta-inferences enabled a series of radiotherapy readiness self-assessment requirements to be generated, formalised as a REadiness SElf-Assessment (RESEA) Guide' for use by LMICs.

FINDINGS

The meta-inferences identified a large number of factors that acted as facilitators and/or barriers, depending on the situation, which include: awareness and advocacy; political leadership; epidemiological data; financial resources; basic physical infrastructure; radiation safety legislative and regulatory framework; project management; and radiotherapy workforce training and education. 'Commitment', 'cooperation', 'capacity' and 'catalyst' were identified as the key domains enabling development of radiotherapy services. Across these four domains, the RESEA Guide included 37 requirements and 120 readiness questions that LMICs need to consider and answer as part of establishing a new radiotherapy service.

CONCLUSIONS

The RESEA Guide provides a new resource for LMICs to self-assess their capacity to establish safe and sustainable radiotherapy services. Future evaluation of the acceptability and feasibility of the RESEA Guide is needed to inform its validity. Further work, including field study, is needed to inform further refinements. Exploratory and confirmatory factor analyses are required to reduce the data set and test the fit of the four-factor structure (commitment, cooperation, capacity and catalyst) found in the current study.

摘要

背景

在低收入和中等收入国家(LMICs)改善放疗服务的可及性具有挑战性。许多LMICs的放疗项目失败,原因是多方面的障碍导致稀缺资源的大量浪费。支持LMICs自我评估其建立放疗服务的准备情况,将有助于通过确保安全、有效和可持续的循证癌症护理来改善癌症治疗效果。本研究的目的是为LMICs制定关于自我评估其建立安全和可持续放疗服务准备情况的实用指南。

方法

癌症治疗放疗可及性(ARC)项目采用务实的序贯混合定性方法设计,以世界卫生组织的“慢性病创新护理框架”和“卫生系统行动框架构建模块”概念框架为基础。本文报告了总体数据整合过程以及对先前发表的包括系统评价和两部分定性研究(半结构化访谈和参与者验证过程)的各部分进行的元推断。这些元推断生成了一系列放疗准备情况自我评估要求,并将其正式化为供LMICs使用的“准备情况自我评估(RESEA)指南”。

结果

元推断确定了大量根据具体情况起到促进作用和/或阻碍作用的因素,其中包括:意识与宣传;政治领导力;流行病学数据;财政资源;基本物理基础设施;辐射安全立法与监管框架;项目管理;以及放疗工作人员培训与教育。“承诺”“合作”“能力”和“催化剂”被确定为促进放疗服务发展的关键领域。在这四个领域中,RESEA指南包括37项要求和120个准备情况问题,LMICs在建立新的放疗服务时需要考虑并回答这些问题。

结论

RESEA指南为LMICs提供了一种新资源,用于自我评估其建立安全和可持续放疗服务的能力。需要对RESEA指南的可接受性和可行性进行未来评估,以了解其有效性。需要开展包括实地研究在内的进一步工作,以便进行进一步完善。需要进行探索性和验证性因素分析,以减少数据集并检验本研究中发现的四因素结构(承诺、合作、能力和催化剂)的拟合度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ead/7988910/9b98dcf5f402/12913_2021_6274_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验