Chen Yinying, Yang Wei, Chen Qilong, Liu Qiong, Liu Jun, Zhang Yingying, Li Bing, Li Dongfeng, Nan Jingyi, Li Xiaodong, Wu Huikun, Xiang Xinghua, Peng Yehui, Wang Jie, Su Shibing, Wang Zhong
Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixian Ge, Xicheng District, Beijing, 100053, China.
Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing, 100700, China.
J Transl Med. 2021 Mar 23;19(1):122. doi: 10.1186/s12967-021-02791-9.
Discovering potential predictive risks in the super precarcinomatous phase of hepatocellular carcinoma (HCC) without any clinical manifestations is impossible under normal paradigm but critical to control this complex disease.
In this study, we utilized a proposed sequential allosteric modules (AMs)-based approach and quantitatively calculated the topological structural variations of these AMs.
We found the total of 13 oncogenic allosteric modules (OAMs) among chronic hepatitis B (CHB), cirrhosis and HCC network used SimiNEF. We obtained the 11 highly correlated gene pairs involving 15 genes (r > 0.8, P < 0.001) from the 12 OAMs (the out-of-bag (OOB) classification error rate < 0.5) partial consistent with those in independent clinical microarray data, then a three-gene set (cyp1a2-cyp2c19-il6) was optimized to distinguish HCC from non-tumor liver tissues using random forests with an average area under the curve (AUC) of 0.973. Furthermore, we found significant inhibitory effect on the tumor growth of Bel-7402, Hep 3B and Huh7 cell lines in zebrafish treated with the compounds affected those three genes.
These findings indicated that the sequential AMs-based approach could detect HCC risk in the patients with chronic liver disease and might be applied to any time-dependent risk of cancer.
在正常模式下,要在没有任何临床表现的肝细胞癌(HCC)超癌前阶段发现潜在的预测风险是不可能的,但这对于控制这种复杂疾病至关重要。
在本研究中,我们采用了一种基于提出的序列变构模块(AMs)的方法,并定量计算了这些AMs的拓扑结构变化。
我们使用SimiNEF在慢性乙型肝炎(CHB)、肝硬化和HCC网络中总共发现了13个致癌变构模块(OAMs)。我们从12个OAMs(袋外(OOB)分类错误率<0.5)中获得了11对高度相关的基因对,涉及15个基因(r>0.8,P<0.001),部分与独立临床微阵列数据中的基因对一致,然后使用随机森林优化了一个三基因集(cyp1a2-cyp2c19-il6),以区分HCC与非肿瘤肝组织,曲线下面积(AUC)平均值为0.973。此外,我们发现用影响这三个基因的化合物处理的斑马鱼中,对Bel-7402、Hep 3B和Huh7细胞系的肿瘤生长有显著抑制作用。
这些发现表明,基于序列AMs的方法可以检测慢性肝病患者的HCC风险,并可能适用于任何癌症的时间依赖性风险。