Suppr超能文献

利用非结构化的电子病历记录来推导出特定人群的自杀风险模型。

Leveraging unstructured electronic medical record notes to derive population-specific suicide risk models.

机构信息

VAMC White River Junction, 163 Veterans Dr., White River Junction VT, 05009 United States; Department of Psychiatry, Geisel School of Medicine, 1 Rope Ferry Rd, Hanover NH, 03755 United States.

Departments of Pathology and Laboratory Medicine, Geisel School of Medicine, 1 Rope Ferry Rd, Hanover NH, 03755 United States.

出版信息

Psychiatry Res. 2022 Sep;315:114703. doi: 10.1016/j.psychres.2022.114703. Epub 2022 Jul 1.

Abstract

Electronic medical record (EMR)-based suicide risk prediction methods typically rely on analysis of structured variables such as demographics, visit history, and prescription data. Leveraging unstructured EMR notes may improve predictive accuracy by allowing access to nuanced clinical information. We utilized natural language processing (NLP) to analyze a large EMR note corpus to develop a data-driven suicide risk prediction model. We developed a matched case-control sample of U.S. Department of Veterans Affairs (VA) patients in 2015 and 2016. We randomly matched each case (all patients that died by suicide in that interval, n = 5029) with five controls (patients that remained alive). We processed note corpus using NLP methods and applied machine-learning classification algorithms to output. We calculated area under the curve (AUC) and risk tiers to determine predictive accuracy. NLP-derived models demonstrated strong predictive accuracy. Patients that scored within top 10% of risk model accounted for up to 29% of suicide decedents. NLP-derived model compares positively to other leading prediction methods. Our approach is highly implementable, only requiring access to text data and open-source software. Additional studies should evaluate ensemble models incorporating NLP-derived information alongside more typical structured variables.

摘要

基于电子病历 (EMR) 的自杀风险预测方法通常依赖于对人口统计学、就诊史和处方数据等结构化变量的分析。利用非结构化的 EMR 记录可以通过访问细微的临床信息来提高预测准确性。我们利用自然语言处理 (NLP) 分析了大量的 EMR 记录语料库,以开发数据驱动的自杀风险预测模型。我们开发了一个 2015 年和 2016 年美国退伍军人事务部 (VA) 患者的匹配病例对照样本。我们随机将每个病例(该时间段内自杀死亡的所有患者,n=5029)与五个对照(仍存活的患者)相匹配。我们使用 NLP 方法处理记录语料库,并应用机器学习分类算法进行输出。我们计算了曲线下面积 (AUC) 和风险等级来确定预测准确性。NLP 衍生模型表现出很强的预测准确性。在风险模型中得分在前 10%的患者中,有高达 29%的自杀死亡者。NLP 衍生模型优于其他领先的预测方法。我们的方法易于实现,仅需要访问文本数据和开源软件。应进行更多研究来评估包含 NLP 衍生信息的集成模型以及更典型的结构化变量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验