Suppr超能文献

由于火山图而导致的 inflated false discovery rate:问题与解决方案。

Inflated false discovery rate due to volcano plots: problem and solutions.

机构信息

Medical statistics, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands.

出版信息

Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbab053.

Abstract

MOTIVATION

Volcano plots are used to select the most interesting discoveries when too many discoveries remain after application of Benjamini-Hochberg's procedure (BH). The volcano plot suggests a double filtering procedure that selects features with both small adjusted $P$-value and large estimated effect size. Despite its popularity, this type of selection overlooks the fact that BH does not guarantee error control over filtered subsets of discoveries. Therefore the selected subset of features may include an inflated number of false discoveries.

RESULTS

In this paper, we illustrate the substantially inflated type I error rate of volcano plot selection with simulation experiments and RNA-seq data. In particular, we show that the feature with the largest estimated effect is a very likely false positive result. Next, we investigate two alternative approaches for multiple testing with double filtering that do not inflate the false discovery rate. Our procedure is implemented in an interactive web application and is publicly available.

摘要

动机

当应用 Benjamini-Hochberg 程序 (BH) 后仍有太多发现时,火山图可用于选择最有趣的发现。火山图建议采用双重过滤程序,该程序选择具有小调整后 $P$ 值和大估计效应大小的特征。尽管它很受欢迎,但这种选择忽略了 BH 不能保证对发现的过滤子集进行错误控制的事实。因此,所选特征子集可能包含大量虚假发现。

结果

在本文中,我们通过模拟实验和 RNA-seq 数据说明了火山图选择的显著膨胀的 I 型错误率。特别是,我们表明,估计效果最大的特征很可能是一个假阳性结果。接下来,我们研究了两种具有双重过滤的多重检验的替代方法,这些方法不会使假发现率膨胀。我们的程序是在一个交互式网络应用程序中实现的,并公开提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6d/8425469/da73e46e966c/bbab053f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验