Suppr超能文献

基于机器学习方法的长非编码 RNA 鉴定:综述。

Identification of long noncoding RNAs with machine learning methods: a review.

机构信息

School of Electronic and Communication Engineering, Shenzhen Polytechnic.

College of Chemistry, Sichuan University, Sichuan, China.

出版信息

Brief Funct Genomics. 2021 Jun 9;20(3):174-180. doi: 10.1093/bfgp/elab017.

Abstract

Long noncoding RNAs (lncRNAs) are noncoding RNAs with a length greater than 200 nucleotides. Studies have shown that they play an important role in many life activities. Dozens of lncRNAs have been characterized to some extent, and they are reported to be related to the development of diseases in a variety of cells. However, the biological functions of most lncRNAs are currently still unclear. Therefore, accurately identifying and predicting lncRNAs would be helpful for research on their biological functions. Due to the disadvantages of high cost and high resource-intensiveness of experimental methods, scientists have developed numerous computational methods to identify and predict lncRNAs in recent years. In this paper, we systematically summarize the machine learning-based lncRNAs prediction tools from several perspectives, and discuss the challenges and prospects for the future work.

摘要

长链非编码 RNA(lncRNA)是长度大于 200 个核苷酸的非编码 RNA。研究表明,它们在许多生命活动中发挥着重要作用。已经有数十种 lncRNA 得到了一定程度的描述,据报道它们与各种细胞中疾病的发展有关。然而,目前大多数 lncRNA 的生物学功能仍不清楚。因此,准确识别和预测 lncRNA 将有助于研究它们的生物学功能。由于实验方法成本高、资源密集度高的缺点,近年来科学家们开发了许多计算方法来识别和预测 lncRNA。本文从多个角度系统总结了基于机器学习的 lncRNA 预测工具,并讨论了未来工作的挑战和前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验