Suppr超能文献

采用比色传感器阵列、化学计量学工具和分散液液微萃取-气相色谱-质谱法评估大马士革玫瑰馏分样品中的掺杂物。

Evaluation of adulteration in distillate samples of Rosa damascena Mill using colorimetric sensor arrays, chemometric tools and dispersive liquid-liquid microextraction-GC-MS.

机构信息

Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

Chemistry Department, Shiraz University, Shiraz, Iran.

出版信息

Phytochem Anal. 2021 Nov;32(6):1027-1038. doi: 10.1002/pca.3044. Epub 2021 Mar 23.

Abstract

INTRODUCTION

Rosa damascena Mill distillate and its essential oil are widely used in cosmetics, perfumes and food industries. Therefore, the methods of detection for its authentication is an important issue.

OBJECTIVES

We suggest colorimetric sensor array and chemometric methods to discriminate natural Rosa distillate from synthetic adulterates.

MATERIAL AND METHODS

The colour responses of 20 indicators spotted on polyvinylidene fluoride (PVDF) substrate were monitored with a flatbed scanner; then their digital representation was analysed with principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and soft independent modelling of class analogy (SIMCA).

RESULTS

Accurate discrimination of the diluted- and synthetic-mixture samples from the original ones was achieved by PLS-DA and SIMCA models with error rate of 0.01 and 0, specificity of 0.98 and 1, sensitivity of 1 and 1, and accuracy of 0.98 and 0.96, respectively. Discrimination of the synthetic adulterate from the original samples was achieved with error rate of 0.03 and 0.03, specificity of 0.94 and 0.93, sensitivity of 1 and 1, and accuracy of 0.93 and 0.71 with PLS-DA and SIMCA models, respectively. Moreover, the chemical constituents of the samples were analysed using dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry (GC-MS). The main constituents of the distillate were geraniol, citronellol, and phenylethyl alcohol in different percentages, in both original and synthetic adulterate samples.

CONCLUSION

These results point out the successful combination of colorimetric sensor array and PLS-DA and SIMCA as a fast, sensitive and inexpensive screening tool for discrimination of original samples of R. damascena Mill distillate from those prepared from synthetic Rosa essential oils.

摘要

简介

大马士革玫瑰蒸馏液及其精油广泛应用于化妆品、香水和食品工业。因此,对其进行检测是一个重要的问题。

目的

我们建议使用比色传感器阵列和化学计量学方法来区分天然大马士革玫瑰蒸馏液和合成掺杂物。

材料和方法

将 20 种指示剂点在聚偏二氟乙烯(PVDF)基底上,用平板扫描仪监测其颜色反应;然后用主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)和软独立建模分类分析(SIMCA)对其数字表示进行分析。

结果

PLS-DA 和 SIMCA 模型能够准确区分稀释和合成混合物样品与原始样品,错误率分别为 0.01 和 0,特异性分别为 0.98 和 1,灵敏度分别为 1 和 1,准确性分别为 0.98 和 0.96。PLS-DA 和 SIMCA 模型分别以错误率 0.03 和 0.03、特异性 0.94 和 0.93、灵敏度 1 和 1、准确性 0.93 和 0.71 的结果,实现了对合成掺杂物与原始样品的区分。此外,还使用分散液液微萃取和气相色谱-质谱联用(GC-MS)对样品的化学成分进行了分析。在原始和合成掺杂物样品中,蒸馏液的主要成分分别为香叶醇、香茅醇和苯乙醇,含量不同。

结论

这些结果表明,比色传感器阵列与 PLS-DA 和 SIMCA 的成功结合,可作为一种快速、灵敏、廉价的筛选工具,用于区分原始大马士革玫瑰蒸馏液样品与合成的玫瑰精油样品。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验