Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia.
School of Mechanical Medical & Process Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
J Am Chem Soc. 2021 Apr 7;143(13):5080-5090. doi: 10.1021/jacs.1c00575. Epub 2021 Mar 24.
Membranes based on two-dimensional (2D) nanomaterials have shown great potential to alleviate the worldwide freshwater crisis due to their outstanding performance of freshwater extraction from saline water via ion rejection. However, it is still very challenging to achieve high selectivity and high permeance of water desalination through precise -spacing control of 2D nanomaterial membranes within subnanometer. Here, we developed functionalized graphene oxide membranes (FGOMs) with nitrogen groups such as amine groups and polarized nitrogen atoms to enhance metal ion sieving by one-step controlled plasma processing. The nitrogen functionalities can produce strong electrostatic interactions with metal ions and result in a mono/divalent cation selectivity of FGOMs up to 90 and 28.3 in single and binary solution, which is over 10-fold than that of graphene oxide membranes (GOMs). First-principles calculation confirms that the ionic selectivity of FGOMs is induced by the difference of binding energies between metal ions and polarized nitrogen atoms. Besides, the ultrathin FGOMs with a thickness of 50 nm can possess a high water flux of up to 120 mol m h without sacrificing rejection rates of nearly 99.0% on NaCl solution, showing an ultrahigh water/salt selectivity of around 4.31 × 10. Such facile and efficient plasma processing not only endows the GOMs with a promising future sustainable water purification, including ion separation and water desalination, but also provides a new strategy to functionalize 2D nanomaterial membranes for specific purposes.
基于二维(2D)纳米材料的膜由于其通过离子排斥从盐水中提取淡水的出色性能,显示出缓解全球淡水危机的巨大潜力。然而,通过在亚纳米范围内精确控制 2D 纳米材料膜的间隔来实现高选择性和高通量的海水淡化仍然是非常具有挑战性的。在这里,我们通过一步控制的等离子体处理,开发了具有氨基和极化氮原子等含氮基团的功能化氧化石墨烯膜(FGOM),以增强金属离子筛分。氮官能团可以与金属离子产生强烈的静电相互作用,导致 FGOM 在单溶液和双溶液中的单价和二价阳离子选择性分别高达 90 和 28.3,是氧化石墨烯膜(GOM)的 10 倍以上。第一性原理计算证实,FGOM 的离子选择性是由金属离子和极化氮原子之间的结合能差异引起的。此外,厚度为 50nm 的超薄 FGOM 具有高达 120mol m h 的高通量,而 NaCl 溶液的截留率几乎接近 99.0%,水/盐的超高选择性约为 4.31×10。这种简便高效的等离子体处理不仅为 GOM 赋予了可持续的水净化(包括离子分离和海水淡化)的广阔前景,而且为针对特定用途的 2D 纳米材料膜的功能化提供了一种新策略。