You Yue, Ma Yuxi, Zeng Xianghui, Wang Yichao, Du Juan, Qian Yijun, Yang Guoliang, Su Yuyu, Lei Weiwei, Zhao Shuaifei, Qing Yan, Wu Yiqiang, Li Jingliang
Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3220, Australia.
Department of Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia.
Adv Sci (Weinh). 2025 Feb;12(8):e2409556. doi: 10.1002/advs.202409556. Epub 2024 Dec 31.
Two-dimensional (2D) nanochannels have demonstrated outstanding performance for sieving specific molecules or ions, owing to their uniform molecular channel sizes and interlayer physical/chemical properties. However, controllably tuning nanochannel spaces with specific sizes and simultaneously achieving high mechanical strength remain the main challenges. In this work, the inter-sheet gallery d-spacing of graphene oxide (GO) membrane is successfully tailored with high mechanical strength via a general radical-induced polymerization strategy. The introduced amide groups from N-Vinylformamide significantly reinforce the 2D nanochannels within the freestanding membranes, resulting in an ultrahigh tensile strength of up to 105 MPa. The d-spacing of the membrane is controllably tuned within a range of 0.799-1.410 nm, resulting in a variable water permeance of up to 218 L m h bar (1304% higher than that of the pristine GO membranes). In particular, the tailored membranes demonstrate excellent water permeance stability (140 L m h bar) in a 200-h long-term operation and high selectivity of solutes under harsh conditions, including a wide range of pH from 4.0 to 10.0, up to a loading pressure of 12 bar and an external temperature of 40 °C. This approach comprehensively achieves a balance between sieving performance and mechanical strength, satisfying the requirements for the next-generation molecular sieving membranes.
二维(2D)纳米通道由于其均匀的分子通道尺寸和层间物理/化学性质,在筛分特定分子或离子方面表现出卓越的性能。然而,可控地调节具有特定尺寸的纳米通道间距并同时实现高机械强度仍然是主要挑战。在这项工作中,通过一种通用的自由基诱导聚合策略,成功地对氧化石墨烯(GO)膜的层间间距进行了定制,并具有高机械强度。从N-乙烯基甲酰胺引入的酰胺基团显著增强了独立膜内的二维纳米通道,从而产生了高达105兆帕的超高拉伸强度。膜的间距可在0.799-1.410纳米范围内可控调节,导致可变水渗透率高达218升·米⁻²·小时⁻¹·巴⁻¹(比原始GO膜高1304%)。特别是,定制的膜在200小时的长期运行中表现出优异的水渗透稳定性(140升·米⁻²·小时⁻¹·巴⁻¹),并且在苛刻条件下对溶质具有高选择性,包括pH值范围从4.0到10.0、高达12巴的加载压力和40°C的外部温度。这种方法全面实现了筛分性能和机械强度之间的平衡,满足了下一代分子筛分膜的要求。