Suppr超能文献

一种用于组织病理学图像检索的深度度量学习方法。

A deep metric learning approach for histopathological image retrieval.

机构信息

Ministry of Education Key Laboratory of Bioinformatics; Bioinformatics Division and and Center for Synthetic and Systems Biology, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing 100084, China.

Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao City 266000, Shandong Province, China.

出版信息

Methods. 2020 Jul 1;179:14-25. doi: 10.1016/j.ymeth.2020.05.015. Epub 2020 May 19.

Abstract

To distinguish ambiguous images during specimen slides viewing, pathologists usually spend lots of time to seek guidance from confirmed similar images or cases, which is inefficient. Therefore, several histopathological image retrieval methods have been proposed for pathologists to easily obtain images sharing similar content with the query images. However, these methods cannot ensure a reasonable similarity metric, and some of them need lots of annotated images to train a feature extractor to represent images. Motivated by this circumstance, we propose the first deep metric learning-based histopathological image retrieval method in this paper and construct a deep neural network based on the mixed attention mechanism to learn an embedding function under the supervision of image category information. With the learned embedding function, original images are mapped into the predefined metric space where similar images from the same category are close to each other, so that the distance between image pairs in the metric space can be regarded as a reasonable metric for image similarity. We evaluate the proposed method on two histopathological image retrieval datasets: our self-established dataset and a public dataset called Kimia Path24, on which the proposed method achieves recall in top-1 recommendation (Recall@1) of 84.04% and 97.89% respectively. Moreover, further experiments confirm that the proposed method can achieve comparable performance to several published methods with less training data, which hedges the shortage of annotated medical image data to some extent. Code is available at https://github.com/easonyang1996/DML_HistoImgRetrieval.

摘要

为了在查看标本幻灯片时区分模糊图像,病理学家通常需要花费大量时间寻求确认的相似图像或病例的指导,这效率低下。因此,已经提出了几种组织病理学图像检索方法,以便病理学家可以轻松获得与查询图像具有相似内容的图像。然而,这些方法不能保证合理的相似性度量,其中一些方法需要大量标注的图像来训练特征提取器以表示图像。鉴于这种情况,我们在本文中提出了第一个基于深度度量学习的组织病理学图像检索方法,并构建了一个基于混合注意力机制的深度神经网络,在图像类别信息的监督下学习嵌入函数。使用学习到的嵌入函数,原始图像被映射到预定义的度量空间中,其中来自同一类别的相似图像彼此靠近,使得度量空间中图像对之间的距离可以被视为图像相似性的合理度量。我们在两个组织病理学图像检索数据集上评估了所提出的方法:我们自建的数据集和一个名为 Kimia Path24 的公共数据集,在所提出的方法在 top-1 推荐(Recall@1)中分别达到了 84.04%和 97.89%的召回率。此外,进一步的实验证实,所提出的方法在使用较少训练数据的情况下可以达到与几个已发表方法相当的性能,这在一定程度上弥补了标注医学图像数据的不足。代码可在 https://github.com/easonyang1996/DML_HistoImgRetrieval 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验