Suppr超能文献

整理与聚焦:有效数据沟通设计准则的实证评估。

Declutter and Focus: Empirically Evaluating Design Guidelines for Effective Data Communication.

出版信息

IEEE Trans Vis Comput Graph. 2022 Oct;28(10):3351-3364. doi: 10.1109/TVCG.2021.3068337. Epub 2022 Sep 1.

Abstract

Data visualization design has a powerful effect on which patterns we see as salient and how quickly we see them. The visualization practitioner community prescribes two popular guidelines for creating clear and efficient visualizations: declutter and focus. The declutter guidelines suggest removing non-critical gridlines, excessive labeling of data values, and color variability to improve aesthetics and to maximize the emphasis on the data relative to the design itself. The focus guidelines for explanatory communication recommend including a clear headline that describes the relevant data pattern, highlighting a subset of relevant data values with a unique color, and connecting those values to written annotations that contextualize them in a broader argument. We evaluated how these recommendations impact recall of the depicted information across cluttered, decluttered, and decluttered+focused designs of six graph topics. Undergraduate students were asked to redraw previously seen visualizations, to recall their topics and main conclusions, and to rate the varied designs on aesthetics, clarity, professionalism, and trustworthiness. Decluttering designs led to higher ratings on professionalism, and adding focus to the design led to higher ratings on aesthetics and clarity. They also showed better memory for the highlighted pattern in the data, as reflected across redrawings of the original visualization and typed free-response conclusions, though we do not know whether these results would generalize beyond our memory-based tasks. The results largely empirically validate the intuitions of visualization designers and practitioners. The stimuli, data, analysis code, and Supplementary Materials are available at https://osf.io/wes9u/.

摘要

数据可视化设计对于我们认为突出的模式以及我们看到这些模式的速度有强大的影响。可视化从业者社区为创建清晰高效的可视化提供了两条流行的指导原则:精简和聚焦。精简指导原则建议去除非关键的网格线、过多的数据值标签和颜色变化,以提高美学效果,并最大限度地突出数据相对于设计本身的重要性。解释性沟通的聚焦指导原则建议包括一个清晰的标题,描述相关的数据模式,用独特的颜色突出显示相关数据值的子集,并将这些值与上下文相关的书面注释连接起来,以更广泛的论点为背景。我们评估了这些建议在六个图形主题的杂乱、精简和精简+聚焦设计中对所描绘信息的回忆的影响。要求本科生重新绘制之前看过的可视化图像,回忆他们的主题和主要结论,并对各种设计的美学、清晰度、专业性和可信度进行评分。精简设计导致专业性评分更高,而在设计中增加焦点则导致美学和清晰度评分更高。它们还显示出对数据中突出模式的更好记忆,这反映在对原始可视化图像的重新绘制和类型化的自由回答结论中,尽管我们不知道这些结果是否会超出我们基于记忆的任务而推广。结果在很大程度上验证了可视化设计师和从业者的直观感受。刺激物、数据、分析代码和补充材料可在 https://osf.io/wes9u/ 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验