Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8AD, Scotland; email:
Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
Annu Rev Neurosci. 2021 Jul 8;44:315-334. doi: 10.1146/annurev-neuro-100220-093239. Epub 2021 Mar 24.
Advances in the instrumentation and signal processing for simultaneously acquired electroencephalography and functional magnetic resonance imaging (EEG-fMRI) have enabled new ways to observe the spatiotemporal neural dynamics of the human brain. Central to the utility of EEG-fMRI neuroimaging systems are the methods for fusing the two data streams, with machine learning playing a key role. These methods can be dichotomized into those that are symmetric and asymmetric in terms of how the two modalities inform the fusion. Studies using these methods have shown that fusion yields new insights into brain function that are not possible when each modality is acquired separately. As technology improves and methods for fusion become more sophisticated, the future of EEG-fMRI for noninvasive measurement of brain dynamics includes mesoscale mapping at ultrahigh magnetic resonance fields, targeted perturbation-based neuroimaging, and using deep learning to uncover nonlinear representations that link the electrophysiological and hemodynamic measurements.
同时获取脑电图和功能磁共振成像(EEG-fMRI)的仪器和信号处理方面的进展,为观察人类大脑的时空神经动力学提供了新的方法。EEG-fMRI 神经影像学系统的核心是融合两种数据流的方法,机器学习起着关键作用。这些方法可以根据两种模式如何为融合提供信息而分为对称和不对称的方法。使用这些方法的研究表明,融合产生了对大脑功能的新见解,而当单独获取每种模式时则不可能获得这些见解。随着技术的进步和融合方法变得更加复杂,EEG-fMRI 用于无创测量大脑动力学的未来包括在超高磁场下进行中尺度映射、基于靶向干扰的神经影像学以及使用深度学习来揭示连接电生理和血液动力学测量的非线性表示。