Suppr超能文献

卒中前残疾和卒中严重程度作为急性卒中病房出院目的地的预测因素。

Pre-stroke disability and stroke severity as predictors of discharge destination from an acute stroke ward.

作者信息

de Berker Henry, de Berker Archy, Aung Htin, Duarte Pedro, Mohammed Salman, Shetty Hamsaraj, Hughes Tom

机构信息

Royal Manchester Children's Hospital, Manchester, UK

joint first authors.

出版信息

Clin Med (Lond). 2021 Mar;21(2):e186-e191. doi: 10.7861/clinmed.2020-0834.

Abstract

BACKGROUND AND RATIONALE

Reliable prediction of discharge destination in acute stroke informs discharge planning and can determine the expectations of patients and carers. There is no existing model that does this using routinely collected indices of pre-morbid disability and stroke severity.

METHODS

Age, gender, pre-morbid modified Rankin Scale (mRS) and National Institutes of Health Stroke Scale (NIHSS) were gathered prospectively on an acute stroke unit from 1,142 consecutive patients. A multiclass random forest classifier was used to train and validate a model to predict discharge destination.

RESULTS

Used alone, the mRS is the strongest predictor of discharge destination. The NIHSS is only predictive when combined with our other variables. The accuracy of the final model was 70.4% overall with a positive predictive value (PPV) and sensitivity of 0.88 and 0.78 for home as the destination, 0.68 and 0.88 for continued inpatient care, 0.7 and 0.53 for community hospital, and 0.5 and 0.18 for death, respectively.

CONCLUSION

Pre-stroke disability rather than stroke severity is the strongest predictor of discharge destination, but in combination with other routinely collected data, both can be used as an adjunct by the multidisciplinary team to predict discharge destination in patients with acute stroke.

摘要

背景与原理

对急性卒中患者出院去向进行可靠预测,有助于出院计划的制定,并能明确患者及其照料者的期望。目前尚无利用常规收集的病前残疾指标和卒中严重程度指标来进行此类预测的模型。

方法

前瞻性收集了急性卒中单元1142例连续患者的年龄、性别、病前改良Rankin量表(mRS)评分及美国国立卫生研究院卒中量表(NIHSS)评分。使用多类随机森林分类器训练并验证一个预测出院去向的模型。

结果

单独使用时,mRS是出院去向最强的预测指标。NIHSS仅在与其他变量结合时具有预测性。最终模型的总体准确率为70.4%,以回家为出院去向时的阳性预测值(PPV)和敏感度分别为0.88和0.78,继续住院治疗时为0.68和0.88,去社区医院时为0.7和0.53,死亡时为0.5和0.18。

结论

卒中前残疾而非卒中严重程度是出院去向最强的预测指标,但结合其他常规收集的数据,两者均可被多学科团队用作预测急性卒中患者出院去向的辅助手段。

相似文献

1
Pre-stroke disability and stroke severity as predictors of discharge destination from an acute stroke ward.
Clin Med (Lond). 2021 Mar;21(2):e186-e191. doi: 10.7861/clinmed.2020-0834.
5
Discharge destination as a surrogate for Modified Rankin Scale defined outcomes at 3- and 12-months poststroke among stroke survivors.
Arch Phys Med Rehabil. 2012 Aug;93(8):1408-1413.e1. doi: 10.1016/j.apmr.2012.02.032. Epub 2012 Mar 21.
6
Stroke rehabilitation: availability of a family member as caregiver and discharge destination.
Eur J Phys Rehabil Med. 2014 Jun;50(3):355-62. Epub 2014 Feb 11.
7
Predictive value of discharge destination for 90-day outcomes among ischemic stroke patients eligible for endovascular treatment: Post-hoc analysis of DEFUSE 3.
J Stroke Cerebrovasc Dis. 2020 Aug;29(8):104902. doi: 10.1016/j.jstrokecerebrovasdis.2020.104902. Epub 2020 May 28.
8
Explaining predictors of discharge destination assessed along the patients' acute stroke journey.
J Stroke Cerebrovasc Dis. 2024 Feb;33(2):107514. doi: 10.1016/j.jstrokecerebrovasdis.2023.107514. Epub 2023 Dec 16.

引用本文的文献

1
Prolonged venous transit is associated with worse neurological recovery in successfully reperfused large vessel strokes.
Ann Clin Transl Neurol. 2025 Jan;12(1):26-33. doi: 10.1002/acn3.52243. Epub 2024 Nov 11.
2
Impact of possible sarcopenia on functional prognosis in patients with acute stroke with premorbid disability.
Geriatr Gerontol Int. 2024 Apr;24(4):359-363. doi: 10.1111/ggi.14840. Epub 2024 Feb 26.
3
Improving multidisciplinary hospital care for acute cerebral circulation disorders in Kazakhstan.
Heliyon. 2023 Aug 1;9(8):e18435. doi: 10.1016/j.heliyon.2023.e18435. eCollection 2023 Aug.
4
Predictors of Discharge Destination After Stroke.
Neurorehabil Neural Repair. 2023 May;37(5):307-315. doi: 10.1177/15459683231166935. Epub 2023 Apr 11.
5
The cost of ischaemic stroke in Croatia.
Eur Stroke J. 2023 Jan;8(1 Suppl):21-27. doi: 10.1177/23969873221123840. Epub 2023 Feb 10.
6
Assisting clinical decision making: tools, rules and teams.
Clin Med (Lond). 2021 Mar;21(2):81. doi: 10.7861/clinmed.ed.21.2.1.

本文引用的文献

1
Clinical frailty independently predicts early mortality after ischaemic stroke.
Age Ageing. 2020 Jul 1;49(4):588-591. doi: 10.1093/ageing/afaa004.
2
Simplified preoperative tool predicting discharge destination after major oncologic gastrointestinal surgery.
J Surg Oncol. 2020 Feb;121(2):249-257. doi: 10.1002/jso.25767. Epub 2019 Dec 2.
3
Scalable and accurate deep learning with electronic health records.
NPJ Digit Med. 2018 May 8;1:18. doi: 10.1038/s41746-018-0029-1. eCollection 2018.
4
The prevalence of frailty among acute stroke patients, and evaluation of method of assessment.
Clin Rehabil. 2019 Oct;33(10):1688-1696. doi: 10.1177/0269215519841417. Epub 2019 Apr 10.
5
The Effect of Frailty on Discharge Location for Medicare Beneficiaries After Acute Stroke.
Arch Phys Med Rehabil. 2019 Jul;100(7):1317-1323. doi: 10.1016/j.apmr.2019.02.006. Epub 2019 Mar 26.
6
Clinically applicable deep learning for diagnosis and referral in retinal disease.
Nat Med. 2018 Sep;24(9):1342-1350. doi: 10.1038/s41591-018-0107-6. Epub 2018 Aug 13.
7
Biological Age is a predictor of mortality in Ischemic Stroke.
Sci Rep. 2018 Mar 7;8(1):4148. doi: 10.1038/s41598-018-22579-0.
9
Could the rise in mortality rates since 2015 be explained by changes in the number of delayed discharges of NHS patients?
J Epidemiol Community Health. 2017 Nov;71(11):1068-1071. doi: 10.1136/jech-2017-209403. Epub 2017 Oct 2.
10
Factors Associated With Ischemic Stroke Survival and Recovery in Older Adults.
Stroke. 2017 Jul;48(7):1818-1826. doi: 10.1161/STROKEAHA.117.016726. Epub 2017 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验