DeepMind, London, UK.
NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK.
Nat Med. 2018 Sep;24(9):1342-1350. doi: 10.1038/s41591-018-0107-6. Epub 2018 Aug 13.
The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting.
诊断成像的数量和复杂性正在以超过人类专业知识解读的速度增长。人工智能在对某些常见疾病的二维照片进行分类方面表现出了巨大的潜力,通常依赖于数百万张注释图像的数据库。到目前为止,在具有三维诊断扫描的真实临床路径中达到专家临床医生表现的挑战仍然没有得到解决。在这里,我们将一种新的深度学习架构应用于从一家主要眼科医院转诊的患者的一组临床异质三维光学相干断层扫描。我们证明,在仅对 14884 次扫描进行训练后,在一系列威胁视力的视网膜疾病方面,我们的推荐性能达到或超过了专家的表现。此外,我们证明我们的架构生成的组织分割可以作为一种与设备无关的表示; 使用不同类型设备的组织分割时,转诊准确性得以保持。我们的工作消除了在真实环境中跨多种病理情况下使用广泛的临床应用而无需大量训练数据的先前障碍。
Graefes Arch Clin Exp Ophthalmol. 2019-3
Med Biol Eng Comput. 2024-9
Exp Biol Med (Maywood). 2021-10
Nat Rev Dis Primers. 2025-8-28
NPJ Digit Med. 2025-8-19