文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

临床适用的深度学习在视网膜疾病的诊断和转诊中的应用。

Clinically applicable deep learning for diagnosis and referral in retinal disease.

机构信息

DeepMind, London, UK.

NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK.

出版信息

Nat Med. 2018 Sep;24(9):1342-1350. doi: 10.1038/s41591-018-0107-6. Epub 2018 Aug 13.


DOI:10.1038/s41591-018-0107-6
PMID:30104768
Abstract

The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting.

摘要

诊断成像的数量和复杂性正在以超过人类专业知识解读的速度增长。人工智能在对某些常见疾病的二维照片进行分类方面表现出了巨大的潜力,通常依赖于数百万张注释图像的数据库。到目前为止,在具有三维诊断扫描的真实临床路径中达到专家临床医生表现的挑战仍然没有得到解决。在这里,我们将一种新的深度学习架构应用于从一家主要眼科医院转诊的患者的一组临床异质三维光学相干断层扫描。我们证明,在仅对 14884 次扫描进行训练后,在一系列威胁视力的视网膜疾病方面,我们的推荐性能达到或超过了专家的表现。此外,我们证明我们的架构生成的组织分割可以作为一种与设备无关的表示; 使用不同类型设备的组织分割时,转诊准确性得以保持。我们的工作消除了在真实环境中跨多种病理情况下使用广泛的临床应用而无需大量训练数据的先前障碍。

相似文献

[1]
Clinically applicable deep learning for diagnosis and referral in retinal disease.

Nat Med. 2018-8-13

[2]
Fully automated detection of retinal disorders by image-based deep learning.

Graefes Arch Clin Exp Ophthalmol. 2019-3

[3]
A Deep Learning Network for Accurate Retinal Multidisease Diagnosis Using Multiview Fusion of En Face and B-Scan Images: A Multicenter Study.

Transl Vis Sci Technol. 2024-12-2

[4]
Evaluating deep learning models for classifying OCT images with limited data and noisy labels.

Sci Rep. 2024-12-5

[5]
Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study.

Lancet Digit Health. 2021-10

[6]
Teleophthalmology-enabled and artificial intelligence-ready referral pathway for community optometry referrals of retinal disease (HERMES): a Cluster Randomised Superiority Trial with a linked Diagnostic Accuracy Study-HERMES study report 1-study protocol.

BMJ Open. 2022-2-1

[7]
Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning.

JAMA Ophthalmol. 2021-9-1

[8]
Segmentation of paracentral acute middle maculopathy lesions in spectral-domain optical coherence tomography images through weakly supervised deep convolutional networks.

Comput Methods Programs Biomed. 2023-10

[9]
Ensemble learning for retinal disease recognition under limited resources.

Med Biol Eng Comput. 2024-9

[10]
Machine learning in optical coherence tomography angiography.

Exp Biol Med (Maywood). 2021-10

引用本文的文献

[1]
Artificial intelligence-based apps for screening and diagnosing diabetic retinopathy and common ocular disorders.

World J Methodol. 2025-12-20

[2]
Early retinal changes in type 2 diabetes detected by texture-based OCT analysis: potential approach for subclinical diabetic retinopathy diagnosis.

Eye Vis (Lond). 2025-9-3

[3]
DeepBiome: A Phylogenetic Tree Informed Deep Neural Network for Microbiome Data Analysis.

Stat Biosci. 2025-4

[4]
AttResAMD: An Attention-Driven Deep Learning Framework for Expert-Level Automated Classification of Age-Related Macular Degeneration from Fundus Photography.

Interdiscip Sci. 2025-8-30

[5]
An artificial intelligence cloud platform for OCT-based retinal anomalies screening system in real clinical environments.

NPJ Digit Med. 2025-8-29

[6]
Diabetic retinal disease.

Nat Rev Dis Primers. 2025-8-28

[7]
Beyond Post hoc Explanations: A Comprehensive Framework for Accountable AI in Medical Imaging Through Transparency, Interpretability, and Explainability.

Bioengineering (Basel). 2025-8-15

[8]
Integrating non-linear radon transformation for diabetic retinopathy grading.

Sci Rep. 2025-8-21

[9]
Compact Vision-Language Models Enable Efficient and Interpretable Automated OCT Analysis Through Layer Specific Multimodal Learning.

bioRxiv. 2025-8-11

[10]
Specialized curricula for training vision language models in retinal image analysis.

NPJ Digit Med. 2025-8-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索