Rajpal Hardik, Sas Madalina, Lockwood Chris, Joakim Rebecca, Peters Nicholas S, Falkenberg Max
Centre for Complexity Science, Imperial College London, London, United Kingdom.
Independent Researcher, Luxembourg.
Comput Cardiol (2010). 2020 Aug 14;47. doi: 10.22489/CinC.2020.185. eCollection 2020.
Automated ECG classification is a standard feature in many commercial 12-Lead ECG machines. As part of the Physionet/CinC Challenge 2020, our team, "Mad-hardmax", developed an XGBoost based classification method for the analysis of 12-Lead ECGs acquired from four different countries. Our aim is to develop an interpretable classifier that outputs diagnoses which can be traced to specific ECG features, while also testing the potential of information theoretic features for ECG diagnosis. These measures capture high-level interdependencies across ECG leads which are effective for discriminating conditions with multiple complex morphologies. On unseen test data, our algorithm achieved a challenge score of 0.155 relative to a winning score of 0.533, putting our submission in 24th position from 41 successful entries.
自动心电图分类是许多商用12导联心电图机的标准功能。作为2020年生理信号挑战赛/计算心脏病学挑战赛的一部分,我们的团队“Mad-hardmax”开发了一种基于XGBoost的分类方法,用于分析从四个不同国家采集的12导联心电图。我们的目标是开发一种可解释的分类器,输出可追溯到特定心电图特征的诊断结果,同时测试信息论特征在心电图诊断中的潜力。这些测量方法捕捉了心电图导联之间的高级相互依赖关系,这对于区分具有多种复杂形态的病症非常有效。在未见测试数据上,我们的算法相对于获胜分数0.533的挑战分数为0.155,在41个成功参赛作品中排名第24位。