Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN, United States of America. Department of Statistics, Purdue University, West Lafayette, IN, United States of America.
Physiol Meas. 2018 Oct 24;39(10):104006. doi: 10.1088/1361-6579/aadf0f.
OBJECTIVE: Detection of atrial fibrillation is important for risk stratification of stroke. We developed a novel methodology to classify electrocardiograms (ECGs) to normal, atrial fibrillation and other cardiac dysrhythmias as defined by the PhysioNet Challenge 2017. APPROACH: More specifically, we used piecewise linear splines for the feature selection and a gradient boosting algorithm for the classifier. In the algorithm, the ECG waveform is fitted by a piecewise linear spline, and morphological features relating to the piecewise linear spline coefficients are extracted. XGBoost is used to classify the morphological coefficients and heart rate variability features. MAIN RESULTS: The performance of the algorithm was evaluated by the PhysioNet Challenge database (3658 ECGs classified by experts). Our algorithm achieved an average F score of 81% for a 10-fold cross-validation and also achieved 81% for F score on the independent testing set. This score is similar to the top 9th score (81%) in the official phase of the PhysioNet Challenge 2017. SIGNIFICANCE: Our algorithm presents a good performance on multi-label short ECG classification with selected morphological features.
目的:检测心房颤动对于中风风险分层很重要。我们开发了一种新的方法来对心电图(ECG)进行分类,以将其分为正常、心房颤动和其他心律失常,这是由 2017 年 PhysioNet 挑战赛定义的。
方法:更具体地说,我们使用分段线性样本来进行特征选择,并使用梯度提升算法进行分类器。在该算法中,通过分段线性样条对 ECG 波形进行拟合,并提取与分段线性样条系数相关的形态特征。XGBoost 用于对形态系数和心率变异性特征进行分类。
主要结果:通过 PhysioNet 挑战赛数据库(由专家分类的 3658 个 ECG)评估算法的性能。我们的算法在 10 倍交叉验证中的平均 F 分数为 81%,在独立测试集上的 F 分数也达到了 81%。这个分数与 2017 年 PhysioNet 挑战赛官方阶段的第 9 名(81%)成绩相当。
意义:我们的算法在使用选定的形态特征进行多标签短 ECG 分类方面表现出良好的性能。
Physiol Meas. 2018-9-27
Comput Methods Programs Biomed. 2018-8-10
Biophys Rev (Melville). 2025-1-15
Sci Rep. 2024-6-4
J Clin Hypertens (Greenwich). 2024-3
J Med Signals Sens. 2023-7-12
Health Qual Life Outcomes. 2023-3-29