Suppr超能文献

12 导联心电图分类:PhysioNet/Computing in Cardiology 挑战赛 2020。

Classification of 12-lead ECGs: the PhysioNet/Computing in Cardiology Challenge 2020.

机构信息

Department of Biomedical Informatics, Emory University, Atlanta, GA, United States of America.

Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America.

出版信息

Physiol Meas. 2021 Jan 1;41(12):124003. doi: 10.1088/1361-6579/abc960.

Abstract

OBJECTIVE

Vast 12-lead ECGs repositories provide opportunities to develop new machine learning approaches for creating accurate and automatic diagnostic systems for cardiac abnormalities. However, most 12-lead ECG classification studies are trained, tested, or developed in single, small, or relatively homogeneous datasets. In addition, most algorithms focus on identifying small numbers of cardiac arrhythmias that do not represent the complexity and difficulty of ECG interpretation. This work addresses these issues by providing a standard, multi-institutional database and a novel scoring metric through a public competition: the PhysioNet/Computing in Cardiology Challenge 2020.

APPROACH

A total of 66 361 12-lead ECG recordings were sourced from six hospital systems from four countries across three continents; 43 101 recordings were posted publicly with a focus on 27 diagnoses. For the first time in a public competition, we required teams to publish open-source code for both training and testing their algorithms, ensuring full scientific reproducibility.

MAIN RESULTS

A total of 217 teams submitted 1395 algorithms during the Challenge, representing a diversity of approaches for identifying cardiac abnormalities from both academia and industry. As with previous Challenges, high-performing algorithms exhibited significant drops ([Formula: see text]10%) in performance on the hidden test data.

SIGNIFICANCE

Data from diverse institutions allowed us to assess algorithmic generalizability. A novel evaluation metric considered different misclassification errors for different cardiac abnormalities, capturing the outcomes and risks of different diagnoses. Requiring both trained models and code for training models improved the generalizability of submissions, setting a new bar in reproducibility for public data science competitions.

摘要

目的

大量的 12 导联心电图存储库为开发用于创建准确和自动诊断心脏异常的新机器学习方法提供了机会。然而,大多数 12 导联心电图分类研究是在单一、小或相对同质的数据集上进行训练、测试或开发的。此外,大多数算法侧重于识别少量的心律失常,而这些心律失常并不能代表心电图解释的复杂性和难度。通过提供一个标准的、多机构的数据库和一个新的评分指标,通过公开竞赛来解决这些问题:即 PhysioNet/Computing in Cardiology Challenge 2020。

方法

从四大洲四个国家的六个医院系统中获取了总共 66361 份 12 导联心电图记录;其中 43101 份记录是公开的,重点关注 27 种诊断。在公开竞赛中,我们首次要求团队公开其用于训练和测试算法的开源代码,以确保完全的科学可重复性。

主要结果

共有 217 个团队提交了 1395 个算法参加挑战赛,这代表了学术界和工业界在识别心脏异常方面的各种方法。与之前的挑战赛一样,表现良好的算法在隐藏测试数据上的性能显著下降([公式:见文本]10%)。

意义

来自不同机构的数据使我们能够评估算法的泛化能力。一种新的评估指标考虑了不同心脏异常的不同错误分类,捕捉了不同诊断的结果和风险。要求同时提交训练模型和用于训练模型的代码提高了提交的可泛化性,为公共数据科学竞赛的可重复性设定了新的标准。

相似文献

引用本文的文献

5
Transfer learning in ECG diagnosis: Is it effective?心电图诊断中的迁移学习:它有效吗?
PLoS One. 2025 May 19;20(5):e0316043. doi: 10.1371/journal.pone.0316043. eCollection 2025.

本文引用的文献

10
Electrocardiographic Predictors of Cardiovascular Mortality.心血管死亡率的心电图预测指标
Dis Markers. 2015;2015:727401. doi: 10.1155/2015/727401. Epub 2015 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验