Steensma Anne K, Kaste Joshua A M, Heo Junoh, Orr Douglas J, Sung Chih-Li, Shachar-Hill Yair, Walker Berkley J
Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.
Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
Plant Physiol. 2025 Feb 7;197(2). doi: 10.1093/plphys/kiae629.
The thermoacidophilic red alga Cyanidioschyzon merolae survives its challenging environment likely in part by operating a carbon-concentrating mechanism (CCM). Here, we demonstrated that C. merolae's cellular affinity for CO2 is stronger than the affinity of its rubisco for CO2. This finding provided additional evidence that C. merolae operates a CCM while lacking the structures and functions characteristic of CCMs in other organisms. To test how such a CCM could function, we created a mathematical compartmental model of a simple CCM, distinct from those we have seen previously described in detail. The results of our modeling supported the feasibility of this proposed minimal and non-canonical CCM in C. merolae. To facilitate the robust modeling of this process, we measured and incorporated physiological and enzymatic parameters into the model. Additionally, we trained a surrogate machine-learning model to emulate the mechanistic model and characterized the effects of model parameters on key outputs. This parameter exploration enabled us to identify model features that influenced whether the model met the experimentally derived criteria for functional carbon concentration and efficient energy usage. Such parameters included cytosolic pH, bicarbonate pumping cost and kinetics, cell radius, carboxylation velocity, number of thylakoid membranes, and CO2 membrane permeability. Our exploration thus suggested that a non-canonical CCM could exist in C. merolae and illuminated the essential features generally necessary for CCMs to function.
嗜热嗜酸红藻梅氏嗜热栖热菌能够在其具有挑战性的环境中生存,这可能部分得益于其运转的碳浓缩机制(CCM)。在此,我们证明了梅氏嗜热栖热菌细胞对二氧化碳的亲和力强于其核酮糖-1,5-二磷酸羧化酶(rubisco)对二氧化碳的亲和力。这一发现提供了额外证据,表明梅氏嗜热栖热菌运转着一种碳浓缩机制,同时缺乏其他生物体中碳浓缩机制的典型结构和功能。为了测试这种碳浓缩机制如何发挥作用,我们创建了一个简单碳浓缩机制的数学分区模型,该模型与我们之前详细描述过的模型不同。我们的建模结果支持了这种在梅氏嗜热栖热菌中提出的最小且非典型碳浓缩机制的可行性。为了便于对这一过程进行稳健建模,我们测量并将生理和酶学参数纳入模型。此外,我们训练了一个替代机器学习模型来模拟该机制模型,并表征了模型参数对关键输出的影响。这种参数探索使我们能够识别影响模型是否符合功能碳浓度和高效能量利用实验得出标准的模型特征。这些参数包括胞质pH值、碳酸氢盐泵浦成本和动力学、细胞半径、羧化速度、类囊体膜数量以及二氧化碳膜通透性。因此,我们的探索表明梅氏嗜热栖热菌中可能存在一种非典型碳浓缩机制,并阐明了碳浓缩机制发挥作用通常所需的基本特征。