Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
Mol Syst Biol. 2021 Mar;17(3):e9942. doi: 10.15252/msb.20209942.
Our understanding of complex living systems is limited by our capacity to perform experiments in high throughput. While robotic systems have automated many traditional hand-pipetting protocols, software limitations have precluded more advanced maneuvers required to manipulate, maintain, and monitor hundreds of experiments in parallel. Here, we present Pyhamilton, an open-source Python platform that can execute complex pipetting patterns required for custom high-throughput experiments such as the simulation of metapopulation dynamics. With an integrated plate reader, we maintain nearly 500 remotely monitored bacterial cultures in log-phase growth for days without user intervention by taking regular density measurements to adjust the robotic method in real-time. Using these capabilities, we systematically optimize bioreactor protein production by monitoring the fluorescent protein expression and growth rates of a hundred different continuous culture conditions in triplicate to comprehensively sample the carbon, nitrogen, and phosphorus fitness landscape. Our results demonstrate that flexible software can empower existing hardware to enable new types and scales of experiments, empowering areas from biomanufacturing to fundamental biology.
我们对复杂生命系统的理解受到高通量实验能力的限制。虽然机器人系统已经自动化了许多传统的手动移液方案,但软件限制使得无法进行更先进的操作,这些操作对于同时操作、维护和监测数百个实验是必需的。在这里,我们介绍了 Pyhamilton,这是一个开源的 Python 平台,可以执行定制高通量实验所需的复杂移液模式,例如模拟种群动态。通过集成的平板读数器,我们通过定期进行密度测量来实时调整机器人方法,在没有用户干预的情况下对数天对数以千计的处于对数生长期的细菌培养物进行近乎 500 次远程监测。使用这些功能,我们通过监测荧光蛋白的表达和一百种不同连续培养条件的生长速率来系统地优化生物反应器蛋白的生产,对三重复验进行了全面的碳、氮和磷适应景观采样。我们的结果表明,灵活的软件可以使现有硬件实现新类型和规模的实验,从生物制造到基础生物学等领域都将受益。