Hu Huifang, Kong Ying, Liu Menglong, Kolivoška Viliam, Rudnev Alexander V, Hou Yuhui, Erni Rolf, Vesztergom Soma, Broekmann Peter
NCCR Catalysis, University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical Sciences Freiestrasse 3 3012 Bern Switzerland
J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 182 23 Prague Czechia.
J Mater Chem A Mater. 2022 Dec 12;11(10):5083-5094. doi: 10.1039/d2ta06965b. eCollection 2023 Mar 7.
The application of gas diffusion electrodes (GDEs) for the electrochemical reduction of CO to value-added products creates the possibility of achieving current densities of a few hundred mA cm. To achieve stable operation at such high reaction rates remains, however, a challenging task, due to the flooding of the GDE. In order to mitigate flooding in a zero-gap membrane-electrode assembly (MEA) configuration, paths for effective electrolyte perspiration inside the GDE structure have to be kept open during the electrolysis process. Here we demonstrate that apart from the operational parameters of the electrolysis and the structural properties of the supporting gas diffusion layers, also the chemical composition of the applied catalyst inks can play a decisive role in the electrolyte management of GDEs used for CO electroreduction. In particular, the presence of excess amounts of polymeric capping agents (used to stabilize the catalyst nanoparticles) can lead to a blockage of micropores, which hinders perspiration and initiates the flooding of the microporous layer. Here we use a novel ICP-MS analysis-based approach to quantitatively monitor the amount of perspired electrolyte that exits a GDE-based CO electrolyser, and we show a direct correlation between the break-down of effective perspiration and the appearance of flooding-the latter ultimately leading to a loss of electrolyser stability. We recommend the use of an ultracentrifugation-based approach by which catalyst inks containing no excess amount of polymeric capping agents can be formulated. Using these inks, the stability of electrolyses can be ensured for much longer times.
将气体扩散电极(GDE)应用于将CO电化学还原为增值产品,使得实现几百mA/cm的电流密度成为可能。然而,由于GDE的水淹问题,要在如此高的反应速率下实现稳定运行仍然是一项具有挑战性的任务。为了减轻零间隙膜电极组件(MEA)配置中的水淹现象,在电解过程中必须保持GDE结构内部有效电解液排汗的通道畅通。在此,我们证明,除了电解的操作参数和支撑气体扩散层的结构特性外,所应用催化剂墨水的化学成分在用于CO电还原的GDE的电解液管理中也可以起到决定性作用。特别是,过量的聚合物封端剂(用于稳定催化剂纳米颗粒)的存在会导致微孔堵塞,从而阻碍排汗并引发微孔层的水淹。在此,我们使用一种基于ICP-MS分析的新颖方法来定量监测从基于GDE的CO电解槽中排出的排汗电解液的量,并且我们展示了有效排汗的破坏与水淹现象的出现之间的直接关联——后者最终导致电解槽稳定性的丧失。我们建议使用基于超速离心的方法来配制不含过量聚合物封端剂的催化剂墨水。使用这些墨水,可以确保电解的稳定性在更长时间内得以维持。