Suppr超能文献

DEFAEK:用于人脸反欺骗的域有效快速自适应网络。

DEFAEK: Domain Effective Fast Adaptive Network for Face Anti-Spoofing.

作者信息

Lin Jiun-Da, Han Yue-Hua, Huang Po-Han, Tan Julianne, Chen Jun-Cheng, Tanveer M, Hua Kai-Lung

机构信息

Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan, ROC; Research Center for Information Technology Innovation, Academia Sinica, Taipei, 115201, Taiwan, ROC.

Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan, ROC.

出版信息

Neural Netw. 2023 Apr;161:83-91. doi: 10.1016/j.neunet.2023.01.018. Epub 2023 Jan 25.

Abstract

Existing deep learning based face anti-spoofing (FAS) or deepfake detection approaches usually rely on large-scale datasets and powerful networks with significant amount of parameters to achieve satisfactory performance. However, these make them resource-heavy and unsuitable for handheld devices. Moreover, they are limited by the types of spoof in the dataset they train on and require considerable training time. To produce a robust FAS model, they need large datasets covering the widest variety of predefined presentation attacks possible. Testing on new or unseen attacks or environments generally results in poor performance. Ideally, the FAS model should learn discriminative features that can generalize well even on unseen spoof types. In this paper, we propose a fast learning approach called Domain Effective Fast Adaptive nEt-worK (DEFAEK), a face anti-spoofing approach based on the optimization-based meta-learning paradigm that effectively and quickly adapts to new tasks. DEFAEK treats differences in an environment as domains and simulates multiple domain shifts during training. To further improve the effectiveness and efficiency of meta-learning, we adopt the metric learning in the inner loop update with careful sample selection. With extensive experiments on the challenging CelebA-Spoof and FaceForensics++ datasets, the evaluation results show that DEFAEK can learn cues independent of the environment with good generalization capability. In addition, the resulting model is lightweight following the design principle of modern lightweight network architecture and still generalizes well on unseen classes. In addition, we also demonstrate our model's capabilities by comparing the numbers of parameters, FLOPS, and model performance with other state-of-the-art methods.

摘要

现有的基于深度学习的人脸反欺骗(FAS)或深度伪造检测方法通常依赖大规模数据集和具有大量参数的强大网络来实现令人满意的性能。然而,这些方法使得它们资源消耗大,不适合手持设备。此外,它们受到所训练数据集里欺骗类型的限制,并且需要相当长的训练时间。为了生成一个强大的FAS模型,它们需要涵盖尽可能多预定义呈现攻击类型的大型数据集。在新的或未见过的攻击或环境上进行测试通常会导致性能不佳。理想情况下,FAS模型应该学习即使在未见过的欺骗类型上也能很好泛化的判别特征。在本文中,我们提出了一种名为域有效快速自适应网络(DEFAEK)的快速学习方法,这是一种基于基于优化的元学习范式的人脸反欺骗方法,能够有效且快速地适应新任务。DEFAEK将环境中的差异视为域,并在训练期间模拟多个域转移。为了进一步提高元学习的有效性和效率,我们在内循环更新中采用度量学习并仔细选择样本。通过在具有挑战性的CelebA-Spoof和FaceForensics++数据集上进行广泛实验,评估结果表明DEFAEK可以学习独立于环境的线索,具有良好的泛化能力。此外,按照现代轻量级网络架构的设计原则,所得模型是轻量级的,并且在未见过的类别上仍然能很好地泛化。此外,我们还通过将参数数量、FLOPS和模型性能与其他现有最先进方法进行比较,展示了我们模型的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验