Suppr超能文献

NAS-FAS:基于静态-动态差分网络搜索的人脸活体检测

NAS-FAS: Static-Dynamic Central Difference Network Search for Face Anti-Spoofing.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2021 Sep;43(9):3005-3023. doi: 10.1109/TPAMI.2020.3036338. Epub 2021 Aug 4.

Abstract

Face anti-spoofing (FAS) plays a vital role in securing face recognition systems. Existing methods heavily rely on the expert-designed networks, which may lead to a sub-optimal solution for FAS task. Here we propose the first FAS method based on neural architecture search (NAS), called NAS-FAS, to discover the well-suited task-aware networks. Unlike previous NAS works mainly focus on developing efficient search strategies in generic object classification, we pay more attention to study the search spaces for FAS task. The challenges of utilizing NAS for FAS are in two folds: the networks searched on 1) a specific acquisition condition might perform poorly in unseen conditions, and 2) particular spoofing attacks might generalize badly for unseen attacks. To overcome these two issues, we develop a novel search space consisting of central difference convolution and pooling operators. Moreover, an efficient static-dynamic representation is exploited for fully mining the FAS-aware spatio-temporal discrepancy. Besides, we propose Domain/Type-aware Meta-NAS, which leverages cross-domain/type knowledge for robust searching. Finally, in order to evaluate the NAS transferability for cross datasets and unknown attack types, we release a large-scale 3D mask dataset, namely CASIA-SURF 3DMask, for supporting the new 'cross-dataset cross-type' testing protocol. Experiments demonstrate that the proposed NAS-FAS achieves state-of-the-art performance on nine FAS benchmark datasets with four testing protocols.

摘要

人脸防欺诈(FAS)在确保人脸识别系统的安全性方面起着至关重要的作用。现有的方法严重依赖于专家设计的网络,这可能导致 FAS 任务的解决方案不够理想。在这里,我们提出了第一个基于神经架构搜索(NAS)的 FAS 方法,称为 NAS-FAS,以发现适合任务的网络。与主要关注在通用目标分类中开发高效搜索策略的先前 NAS 工作不同,我们更加注重研究 FAS 任务的搜索空间。在 FAS 中利用 NAS 的挑战有两个方面:1)在特定获取条件下搜索到的网络可能在未见过的条件下表现不佳,2)特定的欺骗攻击可能在未见过的攻击中泛化效果不佳。为了克服这两个问题,我们开发了一个由中心差分卷积和池化算子组成的新搜索空间。此外,还利用了有效的静态-动态表示来充分挖掘 FAS 感知的时空差异。此外,还提出了领域/类型感知元 NAS,利用跨领域/类型的知识进行稳健搜索。最后,为了评估 NAS 在跨数据集和未知攻击类型上的可转移性,我们发布了一个大规模的 3D 面具数据集,即 CASIA-SURF 3DMask,以支持新的“跨数据集跨类型”测试协议。实验表明,所提出的 NAS-FAS 在九个 FAS 基准数据集上实现了最先进的性能,有四种测试协议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验