Suppr超能文献

无监督贝叶斯预测核糖体图谱数据中的 RNA 翻译。

Unsupervised Bayesian Prediction of RNA Translation from Ribosome Profiling Data.

机构信息

Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg, Germany.

Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany.

出版信息

Methods Mol Biol. 2021;2252:295-312. doi: 10.1007/978-1-0716-1150-0_14.

Abstract

Ribosome profiling has been instrumental in leading to important discoveries in several fields of life sciences. Here we describe a computational approach that enables identification of translation events on a genome-wide scale from ribosome profiling data. Periodic fragment sizes indicative of active translation are selected without supervision for each library. Our workflow allows to map the whole translational landscape of a given cell, tissue, or organism, under varying conditions, and can be used to expand the search for novel, uncharacterized open reading frames, such as regulatory upstream translation events. Through a detailed workflow example, we show how to perform qualitative and quantitative analysis of translatomes.

摘要

核糖体图谱分析在生命科学的多个领域的重要发现中发挥了重要作用。在这里,我们描述了一种计算方法,可从核糖体图谱分析数据中在全基因组范围内识别翻译事件。为每个文库选择无监督的具有活性翻译的周期性片段大小。我们的工作流程允许在不同条件下映射给定细胞、组织或生物体的整个翻译图谱,并可用于扩展对新型、未表征开放阅读框(如调节上游翻译事件)的搜索。通过详细的工作流程示例,我们展示了如何对转录组进行定性和定量分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验