Suppr超能文献

贝叶斯空间模型在影像遗传学中的应用。

A Bayesian spatial model for imaging genetics.

机构信息

Department of Mathematics and Statistics, University of Victoria, British Columbia, Canada.

Institute of Mathematical Sciences, ShanghaiTech University, Shanghai, China.

出版信息

Biometrics. 2022 Jun;78(2):742-753. doi: 10.1111/biom.13460. Epub 2021 Apr 19.

Abstract

We develop a Bayesian bivariate spatial model for multivariate regression analysis applicable to studies examining the influence of genetic variation on brain structure. Our model is motivated by an imaging genetics study of the Alzheimer's Disease Neuroimaging Initiative (ADNI), where the objective is to examine the association between images of volumetric and cortical thickness values summarizing the structure of the brain as measured by magnetic resonance imaging (MRI) and a set of 486 single nucleotide polymorphism (SNPs) from 33 Alzheimer's disease (AD) candidate genes obtained from 632 subjects. A bivariate spatial process model is developed to accommodate the correlation structures typically seen in structural brain imaging data. First, we allow for spatial correlation on a graph structure in the imaging phenotypes obtained from a neighborhood matrix for measures on the same hemisphere of the brain. Second, we allow for correlation in the same measures obtained from different hemispheres (left/right) of the brain. We develop a mean-field variational Bayes algorithm and a Gibbs sampling algorithm to fit the model. We also incorporate Bayesian false discovery rate (FDR) procedures to select SNPs. We implement the methodology in a new release of the R package bgsmtr. We show that the new spatial model demonstrates superior performance over a standard model in our application. Data used in the preparation of this article were obtained from the ADNI database (https://adni.loni.usc.edu).

摘要

我们开发了一种贝叶斯双变量空间模型,用于多元回归分析,适用于研究遗传变异对大脑结构影响的研究。我们的模型是受阿尔茨海默病神经影像学倡议 (ADNI) 的影像学遗传学研究的启发,该研究的目的是检验磁共振成像 (MRI) 测量的大脑结构的容积和皮质厚度值图像与从 632 名受试者中获得的 33 个阿尔茨海默病 (AD) 候选基因的 486 个单核苷酸多态性 (SNP) 之间的关联。我们开发了一个双变量空间过程模型,以适应结构脑成像数据中常见的相关结构。首先,我们允许从大脑同一半球的邻接矩阵获得的影像学表型中的图结构上存在空间相关性。其次,我们允许从大脑的不同半球(左/右)获得的相同测量值之间存在相关性。我们开发了一种均值场变分贝叶斯算法和吉布斯抽样算法来拟合模型。我们还结合了贝叶斯错误发现率 (FDR) 程序来选择 SNP。我们在 R 包 bgsmtr 的新版本中实现了该方法。我们表明,新的空间模型在我们的应用中表现优于标准模型。本文数据来源于 ADNI 数据库(https://adni.loni.usc.edu)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验