Lu Zhao-Hua, Khondker Zakaria, Ibrahim Joseph G, Wang Yue, Zhu Hongtu
Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Neuroimage. 2017 Apr 1;149:305-322. doi: 10.1016/j.neuroimage.2017.01.052. Epub 2017 Jan 29.
To perform a joint analysis of multivariate neuroimaging phenotypes and candidate genetic markers obtained from longitudinal studies, we develop a Bayesian longitudinal low-rank regression (L2R2) model. The L2R2 model integrates three key methodologies: a low-rank matrix for approximating the high-dimensional regression coefficient matrices corresponding to the genetic main effects and their interactions with time, penalized splines for characterizing the overall time effect, and a sparse factor analysis model coupled with random effects for capturing within-subject spatio-temporal correlations of longitudinal phenotypes. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. Simulations show that the L2R2 model outperforms several other competing methods. We apply the L2R2 model to investigate the effect of single nucleotide polymorphisms (SNPs) on the top 10 and top 40 previously reported Alzheimer disease-associated genes. We also identify associations between the interactions of these SNPs with patient age and the tissue volumes of 93 regions of interest from patients' brain images obtained from the Alzheimer's Disease Neuroimaging Initiative.
为了对从纵向研究中获得的多变量神经影像表型和候选遗传标记进行联合分析,我们开发了一种贝叶斯纵向低秩回归(L2R2)模型。L2R2模型整合了三种关键方法:一个低秩矩阵,用于逼近与遗传主效应及其与时间的相互作用相对应的高维回归系数矩阵;惩罚样条,用于刻画总体时间效应;以及一个与随机效应相结合的稀疏因子分析模型,用于捕捉纵向表型的个体内时空相关性。后验计算通过一种高效的马尔可夫链蒙特卡罗算法进行。模拟结果表明,L2R2模型优于其他几种竞争方法。我们应用L2R2模型来研究单核苷酸多态性(SNP)对先前报道的前10个和前40个阿尔茨海默病相关基因的影响。我们还从阿尔茨海默病神经影像倡议获得的患者脑图像中,确定了这些SNP与患者年龄的相互作用和93个感兴趣区域的组织体积之间的关联。