Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Curr Biol. 2021 May 24;31(10):2140-2154.e6. doi: 10.1016/j.cub.2021.02.061. Epub 2021 Mar 24.
Parkinson's disease-causing mutations in the leucine-rich repeat kinase 2 (LRRK2) gene hyperactivate LRRK2 kinase activity and cause increased phosphorylation of Rab GTPases, important regulators of intracellular trafficking. We found that the most common LRRK2 mutation, LRRK2-G2019S, dramatically reduces the processivity of autophagosome transport in neurons in a kinase-dependent manner. This effect was consistent across an overexpression model, neurons from a G2019S knockin mouse, and human induced pluripotent stem cell (iPSC)-derived neurons gene edited to express the G2019S mutation, and the effect was reversed by genetic or pharmacological inhibition of LRRK2. Furthermore, LRRK2 hyperactivation induced by overexpression of Rab29, a known activator of LRRK2 kinase, disrupted autophagosome transport to a similar extent. Mechanistically, we found that hyperactive LRRK2 recruits the motor adaptor JNK-interacting protein 4 (JIP4) to the autophagosomal membrane, inducing abnormal activation of kinesin that we propose leads to an unproductive tug of war between anterograde and retrograde motors. Disruption of autophagosome transport correlated with a significant defect in autophagosome acidification, suggesting that the observed transport deficit impairs effective degradation of autophagosomal cargo in neurons. Our results robustly link increased LRRK2 kinase activity to defects in autophagosome transport and maturation, further implicating defective autophagy in the pathogenesis of Parkinson's disease.
帕金森病相关突变蛋白在富亮氨酸重复激酶 2(LRRK2)基因中过度激活 LRRK2 激酶活性,并导致 Rab GTPases 的磷酸化增加,Rab GTPases 是细胞内运输的重要调节因子。我们发现,最常见的 LRRK2 突变,LRRK2-G2019S,以激酶依赖的方式显著降低神经元自噬体运输的连续性。这种效应在过表达模型、G2019S 敲入小鼠的神经元以及表达 G2019S 突变的基因编辑人诱导多能干细胞 (iPSC) 衍生的神经元中都是一致的,并且这种效应可以通过 LRRK2 的遗传或药理学抑制来逆转。此外,过表达 Rab29(LRRK2 激酶的已知激活剂)引起的 LRRK2 过度激活也会以类似的程度破坏自噬体运输。从机制上讲,我们发现过度活跃的 LRRK2 将运动衔接蛋白 JNK 相互作用蛋白 4(JIP4)募集到自噬体膜上,诱导驱动蛋白的异常激活,我们提出这导致了正向和逆向运动之间无效的拔河比赛。自噬体运输的中断与自噬体酸化的显著缺陷相关,这表明观察到的运输缺陷会损害神经元中自噬体货物的有效降解。我们的研究结果强有力地将 LRRK2 激酶活性的增加与自噬体运输和成熟缺陷联系起来,进一步表明自噬缺陷在帕金森病的发病机制中起作用。