Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom.
Anthem Inc., Indianapolis, Indiana, United States.
Thromb Haemost. 2022 Jan;122(1):142-150. doi: 10.1055/a-1467-2993. Epub 2021 May 28.
There are few large studies examining and predicting the diversified cardiovascular/noncardiovascular comorbidity relationships with stroke. We investigated stroke risks in a very large prospective cohort of patients with multimorbidity, using two common clinical rules, a clinical multimorbid index and a machine-learning (ML) approach, accounting for the complex relationships among variables, including the dynamic nature of changing risk factors.
We studied a prospective U.S. cohort of 3,435,224 patients from medical databases in a 2-year investigation. Stroke outcomes were examined in relationship to diverse multimorbid conditions, demographic variables, and other inputs, with ML accounting for the dynamic nature of changing multimorbidity risk factors, two clinical risk scores, and a clinical multimorbid index.
Common clinical risk scores had moderate and comparable c indices with stroke outcomes in the training and external validation samples (validation-CHADS: c index 0.812, 95% confidence interval [CI] 0.808-0.815; CHADS-VASc: c index 0.809, 95% CI 0.805-0.812). A clinical multimorbid index had higher discriminant validity values for both the training/external validation samples (validation: c index 0.850, 95% CI 0.847-0.853). The ML-based algorithms yielded the highest discriminant validity values for the gradient boosting/neural network logistic regression formulations with no significant differences among the ML approaches (validation for logistic regression: c index 0.866, 95% CI 0.856-0.876). Calibration of the ML-based formulation was satisfactory across a wide range of predicted probabilities. Decision curve analysis demonstrated that clinical utility for the ML-based formulation was better than that for the two current clinical rules and the newly developed multimorbid tool. Also, ML models and clinical stroke risk scores were more clinically useful than the "treat all" strategy.
Complex relationships of various comorbidities uncovered using a ML approach for diverse (and dynamic) multimorbidity changes have major consequences for stroke risk prediction. This approach may facilitate automated approaches for dynamic risk stratification in the significant presence of multimorbidity, helping in the decision-making process for risk assessment and integrated/holistic management.
目前很少有大型研究探讨和预测与中风相关的多样化心血管/非心血管合并症关系。我们使用两种常见的临床规则,即临床多病症指数和机器学习(ML)方法,对患有多种合并症的大型前瞻性队列患者进行了中风风险研究,这些规则考虑了变量之间的复杂关系,包括不断变化的危险因素的动态性质。
我们研究了来自医疗数据库的 3435224 名美国前瞻性队列患者,为期 2 年。使用 ML 来考虑不断变化的多病症危险因素、两种临床风险评分和临床多病症指数的动态性质,将中风结果与多种多病症情况、人口统计学变量和其他输入相关联。
常见的临床风险评分在训练和外部验证样本中对中风结果具有中等且相当的 c 指数(验证-CHADS:c 指数 0.812,95%置信区间[CI]0.808-0.815;CHADS-VASc:c 指数 0.809,95%CI 0.805-0.812)。临床多病症指数在训练/外部验证样本中具有更高的判别有效性值(验证:c 指数 0.850,95%CI 0.847-0.853)。基于 ML 的算法对梯度提升/神经网络逻辑回归公式产生了最高的判别有效性值,而这些 ML 方法之间没有显著差异(逻辑回归验证:c 指数 0.866,95%CI 0.856-0.876)。基于 ML 的配方在广泛的预测概率范围内具有令人满意的校准。决策曲线分析表明,基于 ML 的配方的临床实用性优于两种现有的临床规则和新开发的多病症工具。此外,ML 模型和临床中风风险评分比“治疗所有”策略更具临床实用性。
使用 ML 方法研究各种合并症之间的复杂关系,对不同(和动态)多病症变化的中风风险预测有重大影响。这种方法可能有助于在多病症大量存在的情况下实现自动动态风险分层,有助于风险评估和综合/整体管理的决策过程。