文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习模型在甲状腺结节细针穿刺活检诊断中的应用:一项在中国进行的回顾性、前瞻性、多中心研究。

Deep learning models for thyroid nodules diagnosis of fine-needle aspiration biopsy: a retrospective, prospective, multicentre study in China.

机构信息

Department of Cellular and Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.

Cells Vision (Guangzhou) Medical Technology, Guangzhou, China.

出版信息

Lancet Digit Health. 2024 Jul;6(7):e458-e469. doi: 10.1016/S2589-7500(24)00085-2. Epub 2024 Jun 6.


DOI:10.1016/S2589-7500(24)00085-2
PMID:38849291
Abstract

BACKGROUND: Accurately distinguishing between malignant and benign thyroid nodules through fine-needle aspiration cytopathology is crucial for appropriate therapeutic intervention. However, cytopathologic diagnosis is time consuming and hindered by the shortage of experienced cytopathologists. Reliable assistive tools could improve cytopathologic diagnosis efficiency and accuracy. We aimed to develop and test an artificial intelligence (AI)-assistive system for thyroid cytopathologic diagnosis according to the Thyroid Bethesda Reporting System. METHODS: 11 254 whole-slide images (WSIs) from 4037 patients were used to train deep learning models. Among the selected WSIs, cell level was manually annotated by cytopathologists according to The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC) guidelines of the second edition (2017 version). A retrospective dataset of 5638 WSIs of 2914 patients from four medical centres was used for validation. 469 patients were recruited for the prospective study of the performance of AI models and their 537 thyroid nodule samples were used. Cohorts for training and validation were enrolled between Jan 1, 2016, and Aug 1, 2022, and the prospective dataset was recruited between Aug 1, 2022, and Jan 1, 2023. The performance of our AI models was estimated as the area under the receiver operating characteristic (AUROC), sensitivity, specificity, accuracy, positive predictive value, and negative predictive value. The primary outcomes were the prediction sensitivity and specificity of the model to assist cyto-diagnosis of thyroid nodules. FINDINGS: The AUROC of TBSRTC III+ (which distinguishes benign from TBSRTC classes III, IV, V, and VI) was 0·930 (95% CI 0·921-0·939) for Sun Yat-sen Memorial Hospital of Sun Yat-sen University (SYSMH) internal validation and 0·944 (0·929 - 0·959), 0·939 (0·924-0·955), 0·971 (0·938-1·000) for The First People's Hospital of Foshan (FPHF), Sichuan Cancer Hospital & Institute (SCHI), and The Third Affiliated Hospital of Guangzhou Medical University (TAHGMU) medical centres, respectively. The AUROC of TBSRTC V+ (which distinguishes benign from TBSRTC classes V and VI) was 0·990 (95% CI 0·986-0·995) for SYSMH internal validation and 0·988 (0·980-0·995), 0·965 (0·953-0·977), and 0·991 (0·972-1·000) for FPHF, SCHI, and TAHGMU medical centres, respectively. For the prospective study at SYSMH, the AUROC of TBSRTC III+ and TBSRTC V+ was 0·977 and 0·981, respectively. With the assistance of AI, the specificity of junior cytopathologists was boosted from 0·887 (95% CI 0·8440-0·922) to 0·993 (0·974-0·999) and the accuracy was improved from 0·877 (0·846-0·904) to 0·948 (0·926-0·965). 186 atypia of undetermined significance samples from 186 patients with BRAF mutation information were collected; 43 of them harbour the BRAF mutation. 91% (39/43) of BRAF-positive atypia of undetermined significance samples were identified as malignant by the AI models. INTERPRETATION: In this study, we developed an AI-assisted model named the Thyroid Patch-Oriented WSI Ensemble Recognition (ThyroPower) system, which facilitates rapid and robust cyto-diagnosis of thyroid nodules, potentially enhancing the diagnostic capabilities of cytopathologists. Moreover, it serves as a potential solution to mitigate the scarcity of cytopathologists. FUNDING: Guangdong Science and Technology Department. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.

摘要

背景:通过细针穿刺细胞学病理准确区分甲状腺良恶性结节对于适当的治疗干预至关重要。然而,细胞病理诊断耗时且受到经验丰富的细胞病理学家短缺的限制。可靠的辅助工具可以提高细胞病理诊断的效率和准确性。我们旨在根据甲状腺 Bethesda 报告系统(Thyroid Bethesda Reporting System)开发和测试用于甲状腺细胞病理诊断的人工智能(AI)辅助系统。

方法:使用来自 4037 名患者的 11254 张全切片图像(WSI)来训练深度学习模型。在所选的 WSI 中,根据甲状腺细胞病理报告的 Bethesda 系统(The Bethesda System for Reporting Thyroid Cytopathology,TBSRTC)第二版(2017 年版)的指南,由细胞病理学家对细胞水平进行手动注释。来自四个医学中心的 2914 名患者的 5638 张 WSI 被用于验证。为了研究 AI 模型的性能及其 537 个甲状腺结节样本,招募了 469 名患者进行前瞻性研究。训练和验证队列于 2016 年 1 月 1 日至 2022 年 8 月 1 日入组,前瞻性数据集于 2022 年 8 月 1 日至 2023 年 1 月 1 日入组。我们通过计算受试者工作特征曲线(receiver operating characteristic,ROC)下的面积(area under the receiver operating characteristic,AUROC)、敏感性、特异性、准确性、阳性预测值和阴性预测值来评估 AI 模型的性能。主要结局是模型辅助甲状腺结节细胞学诊断的预测敏感性和特异性。

结果:中山大学孙逸仙纪念医院(Sun Yat-sen Memorial Hospital of Sun Yat-sen University,SYSMH)内部验证的 TBSRTC III+(区分良性和 TBSRTC 三级、四级、五级和六级)的 AUROC 为 0.930(95%CI 0.921-0.939),而佛山第一人民医院(The First People's Hospital of Foshan,FPHF)、四川华西医院(Sichuan Cancer Hospital & Institute,SCHI)和广州医科大学附属第三医院(The Third Affiliated Hospital of Guangzhou Medical University,TAHGMU)的 AUROC 分别为 0.944(0.929-0.959)、0.939(0.924-0.955)和 0.971(0.938-1.000)。SYSMH 内部验证的 TBSRTC V+(区分良性和 TBSRTC 五级和六级)的 AUROC 为 0.990(95%CI 0.986-0.995),而 FPHF、SCHI 和 TAHGMU 的 AUROC 分别为 0.988(0.980-0.995)、0.965(0.953-0.977)和 0.991(0.972-1.000)。在 SYSMH 的前瞻性研究中,TBSRTC III+和 TBSRTC V+的 AUROC 分别为 0.977 和 0.981。在 AI 的辅助下,初级细胞病理学家的特异性从 0.887(95%CI 0.8440-0.922)提高到 0.993(0.974-0.999),准确性从 0.877(95%CI 0.846-0.904)提高到 0.948(0.926-0.965)。收集了 186 名携带 BRAF 突变信息的具有不确定意义的不典型性(atypia of undetermined significance,AUS)样本的患者,其中 43 名患者携带 BRAF 突变。AI 模型识别出 91%(39/43)的 BRAF 阳性 AUS 为恶性。

结论:在这项研究中,我们开发了一种名为 ThyroPower 的 AI 辅助模型,该模型有助于快速、稳健地进行甲状腺结节的细胞学诊断,有可能增强细胞病理学家的诊断能力。此外,它还可能解决细胞病理学家短缺的问题。

资金:广东省科技厅。

相似文献

[1]
Deep learning models for thyroid nodules diagnosis of fine-needle aspiration biopsy: a retrospective, prospective, multicentre study in China.

Lancet Digit Health. 2024-7

[2]
BRAF V600E mutation and the Bethesda System for Reporting Thyroid Cytopathology of fine-needle aspiration biopsy for distinguishing benign from malignant thyroid nodules.

Medicine (Baltimore). 2021-9-17

[3]
Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: a multicentre diagnostic study.

Lancet Digit Health. 2021-4

[4]
Improved Diagnostic Accuracy of Thyroid Fine-Needle Aspiration Cytology with Artificial Intelligence Technology.

Thyroid. 2024-6

[5]
The combination of ACR-Thyroid Imaging Reporting and Data system and The Bethesda System for Reporting Thyroid Cytopathology in the evaluation of thyroid nodules-An institutional experience.

Cytopathology. 2021-7

[6]
Application of the Bethesda system for reporting thyroid cytopathology for classification of thyroid nodules: A clinical and cytopathological characteristics in Bhutanese population.

Diagn Cytopathol. 2021-11

[7]
Diagnostic interobserver agreement for thyroid fine-needle aspirates: Effects of reviewer experience and molecular diagnostics.

Am J Clin Pathol. 2024-9-3

[8]
[On-site fine-needle aspiration cytology of thyroid nodules. Quality assurance of the Bethesda System for Reporting Thyroid Cytopathology (2008)].

Orv Hetil. 2015-10-11

[9]
Fine-needle Aspiration Washout Precipitation Specimens: An Acceptable Supplement to Genetic Mutation Detection of Thyroid Nodules.

Technol Cancer Res Treat. 2021

[10]
Bethesda System Categories of Fine Needle Aspiration Cytology Are Not Associated with Thyroid Nodule Location: A Single Institution Experience.

Acta Cytol. 2021

引用本文的文献

[1]
High efficiency classification of thyroid cytopathological images based on knowledge distillation and vision transformer.

Sci Rep. 2025-8-17

[2]
Recent topics on thyroid cytopathology: reporting systems and ancillary studies.

J Pathol Transl Med. 2025-7

[3]
Multimodal GPT model for assisting thyroid nodule diagnosis and management.

NPJ Digit Med. 2025-5-3

[4]
Mapping the giants: a bibliometric analysis of the top 100 most-cited thyroid nodules studies.

Front Med (Lausanne). 2025-3-25

[5]
Prediction of Seronegative Hashimoto's thyroiditis using machine learning models based on ultrasound radiomics: a multicenter study.

BMC Immunol. 2025-4-7

[6]
Quantitative analysis of studies that use artificial intelligence on thyroid cancer: a 20-year bibliometric analysis.

Front Oncol. 2025-3-18

[7]
Deep learning model for diagnosis of thyroid nodules with size less than 1 cm: A multicenter, retrospective study.

Eur J Radiol Open. 2024-10-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索