Suppr超能文献

黏连蛋白:动态基因组拓扑结构和基因表达重编程的背后。

Cohesin: behind dynamic genome topology and gene expression reprogramming.

机构信息

Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.

Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.

出版信息

Trends Cell Biol. 2021 Sep;31(9):760-773. doi: 10.1016/j.tcb.2021.03.005. Epub 2021 Mar 22.

Abstract

Beyond its originally discovered role tethering replicated sister chromatids, cohesin has emerged as a master regulator of gene expression. Recent advances in chromatin topology resolution and single-cell studies have revealed that cohesin has a pivotal role regulating highly dynamic chromatin interactions linked to transcription control. The dynamic association of cohesin with chromatin and its capacity to perform loop extrusion contribute to the heterogeneity of chromatin contacts. Additionally, different cohesin subcomplexes, with specific properties and regulation, control gene expression across the cell cycle and during developmental cell commitment. Here, we discuss the most recent literature in the field to highlight the role of cohesin in gene expression regulation during transcriptional shifts and its relationship with human diseases.

摘要

除了最初发现的将复制的姐妹染色单体固定的作用外,黏合蛋白已成为基因表达的主要调节剂。最近在染色质拓扑分辨率和单细胞研究方面的进展表明,黏合蛋白在调节与转录控制相关的高度动态染色质相互作用方面起着关键作用。黏合蛋白与染色质的动态结合及其进行环挤出的能力导致了染色质接触的异质性。此外,不同的黏合蛋白亚基复合物具有特定的性质和调节功能,控制细胞周期和发育细胞分化过程中的基因表达。在这里,我们讨论该领域的最新文献,以强调黏合蛋白在转录转换过程中基因表达调控中的作用及其与人类疾病的关系。

相似文献

1
Cohesin: behind dynamic genome topology and gene expression reprogramming.
Trends Cell Biol. 2021 Sep;31(9):760-773. doi: 10.1016/j.tcb.2021.03.005. Epub 2021 Mar 22.
2
NIPBL and cohesin: new take on a classic tale.
Trends Cell Biol. 2023 Oct;33(10):860-871. doi: 10.1016/j.tcb.2023.03.006. Epub 2023 Apr 15.
3
The dynamic role of cohesin in maintaining human genome architecture.
Bioessays. 2023 Oct;45(10):e2200240. doi: 10.1002/bies.202200240. Epub 2023 Aug 21.
4
The expanding phenotypes of cohesinopathies: one ring to rule them all!
Cell Cycle. 2019 Nov;18(21):2828-2848. doi: 10.1080/15384101.2019.1658476. Epub 2019 Sep 13.
5
A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture.
EMBO J. 2017 Dec 15;36(24):3600-3618. doi: 10.15252/embj.201798083. Epub 2017 Dec 7.
6
Interplay between CTCF boundaries and a super enhancer controls cohesin extrusion trajectories and gene expression.
Mol Cell. 2021 Aug 5;81(15):3082-3095.e6. doi: 10.1016/j.molcel.2021.06.008. Epub 2021 Jun 30.
7
Absolute quantification of cohesin, CTCF and their regulators in human cells.
Elife. 2019 Jun 17;8:e46269. doi: 10.7554/eLife.46269.
9
Cohesin dynamic association to chromatin and interfacing with replication forks in genome integrity maintenance.
Curr Genet. 2018 Oct;64(5):1005-1013. doi: 10.1007/s00294-018-0824-x. Epub 2018 Mar 16.
10
Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.
EMBO J. 2017 Dec 15;36(24):3573-3599. doi: 10.15252/embj.201798004. Epub 2017 Dec 7.

引用本文的文献

3
Co-essentiality analysis identifies PRR12 as a cohesin interacting protein and contributor to genomic integrity.
Dev Cell. 2025 Apr 21;60(8):1217-1233.e7. doi: 10.1016/j.devcel.2024.12.015. Epub 2024 Dec 31.
4
Loop Extrusion Machinery Impairments in Models and Disease.
Cells. 2024 Nov 17;13(22):1896. doi: 10.3390/cells13221896.
5
Chromosome structure in is determined by boundary pairing not loop extrusion.
Elife. 2024 Aug 7;13:RP94070. doi: 10.7554/eLife.94070.
7
Transcriptional repression across mitosis: mechanisms and functions.
Biochem Soc Trans. 2024 Feb 28;52(1):455-464. doi: 10.1042/BST20231071.
8
The synergism of SMC1A cohesin gene silencing and bevacizumab against colorectal cancer.
J Exp Clin Cancer Res. 2024 Feb 16;43(1):49. doi: 10.1186/s13046-024-02976-2.
9
Cohesin contributes to transcriptional repression of stage-specific genes in the human malaria parasite.
EMBO Rep. 2023 Oct 9;24(10):e57090. doi: 10.15252/embr.202357090. Epub 2023 Aug 18.
10
Senescence: a double-edged sword in beta-cell health and failure?
Front Endocrinol (Lausanne). 2023 May 9;14:1196460. doi: 10.3389/fendo.2023.1196460. eCollection 2023.

本文引用的文献

1
WAPL maintains a cohesin loading cycle to preserve cell-type-specific distal gene regulation.
Nat Genet. 2021 Jan;53(1):100-109. doi: 10.1038/s41588-020-00744-4. Epub 2020 Dec 14.
2
Conformation of sister chromatids in the replicated human genome.
Nature. 2020 Oct;586(7827):139-144. doi: 10.1038/s41586-020-2744-4. Epub 2020 Sep 23.
3
Essential Roles of Cohesin STAG2 in Mouse Embryonic Development and Adult Tissue Homeostasis.
Cell Rep. 2020 Aug 11;32(6):108014. doi: 10.1016/j.celrep.2020.108014.
4
Landscape of cohesin-mediated chromatin loops in the human genome.
Nature. 2020 Jul;583(7818):737-743. doi: 10.1038/s41586-020-2151-x. Epub 2020 Jul 29.
5
Cohesin promotes stochastic domain intermingling to ensure proper regulation of boundary-proximal genes.
Nat Genet. 2020 Aug;52(8):840-848. doi: 10.1038/s41588-020-0647-9. Epub 2020 Jun 22.
6
Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner.
Elife. 2020 May 12;9:e53885. doi: 10.7554/eLife.53885.
7
DNA Methylation Regulates Alternative Polyadenylation via CTCF and the Cohesin Complex.
Mol Cell. 2020 May 21;78(4):752-764.e6. doi: 10.1016/j.molcel.2020.03.024. Epub 2020 Apr 24.
8
The acetyltransferase Eco1 elicits cohesin dimerization during S phase.
J Biol Chem. 2020 May 29;295(22):7554-7565. doi: 10.1074/jbc.RA120.013102. Epub 2020 Apr 20.
9
Specialized functions of cohesins STAG1 and STAG2 in 3D genome architecture.
Curr Opin Genet Dev. 2020 Apr;61:9-16. doi: 10.1016/j.gde.2020.02.024. Epub 2020 Apr 12.
10
Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcriptional control.
Genome Res. 2020 Apr;30(4):515-527. doi: 10.1101/gr.253211.119. Epub 2020 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验