Suppr超能文献

控制网络集合。

Controlling network ensembles.

机构信息

Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM, USA.

出版信息

Nat Commun. 2021 Mar 25;12(1):1884. doi: 10.1038/s41467-021-22172-6.

Abstract

The field of optimal control typically requires the assumption of perfect knowledge of the system one desires to control, which is an unrealistic assumption for biological systems, or networks, typically affected by high levels of uncertainty. Here, we investigate the minimum energy control of network ensembles, which may take one of a number of possible realizations. We ensure the controller derived can perform the desired control with a tunable amount of accuracy and we study how the control energy and the overall control cost scale with the number of possible realizations. Our focus is in characterizing the solution of the optimal control problem in the limit in which the systems are drawn from a continuous distribution, and in particular, how to properly pose the weighting terms in the objective function. We verify the theory in three examples of interest: a unidirectional chain network with uncertain edge weights and self-loop weights, a network where each edge weight is drawn from a given distribution, and the Jacobian of the dynamics corresponding to the cell signaling network of autophagy in the presence of uncertain parameters.

摘要

最优控制领域通常需要假设对期望控制的系统具有完美的了解,这对于生物系统或网络来说是不现实的假设,因为它们通常受到高度不确定性的影响。在这里,我们研究了网络集合的最小能量控制,这些网络集合可能具有多种可能的实现方式。我们确保所导出的控制器可以以可调的精度执行所需的控制,并研究控制能量和整体控制成本如何随可能实现的数量而扩展。我们的重点是在系统从连续分布中抽取的极限情况下,对最优控制问题的解进行特征描述,特别是如何正确地在目标函数中设置加权项。我们在三个感兴趣的示例中验证了该理论:具有不确定边权重和自循环权重的单向链网络、每条边权重都来自给定分布的网络以及存在不确定参数时自噬细胞信号转导网络的动力学对应的雅可比矩阵。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfaa/7994643/3fc34bf8232e/41467_2021_22172_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验