Suppr超能文献

使用深度神经网络进行生物信号学习和合成。

Biosignals learning and synthesis using deep neural networks.

机构信息

LIBPhys (Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.

Laboratory of Motor Behaviour, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1499-002, Cruz Quebrada - Dafundo, Portugal.

出版信息

Biomed Eng Online. 2017 Sep 25;16(1):115. doi: 10.1186/s12938-017-0405-0.

Abstract

BACKGROUND

Modeling physiological signals is a complex task both for understanding and synthesize biomedical signals. We propose a deep neural network model that learns and synthesizes biosignals, validated by the morphological equivalence of the original ones. This research could lead the creation of novel algorithms for signal reconstruction in heavily noisy data and source detection in biomedical engineering field.

METHOD

The present work explores the gated recurrent units (GRU) employed in the training of respiration (RESP), electromyograms (EMG) and electrocardiograms (ECG). Each signal is pre-processed, segmented and quantized in a specific number of classes, corresponding to the amplitude of each sample and fed to the model, which is composed by an embedded matrix, three GRU blocks and a softmax function. This network is trained by adjusting its internal parameters, acquiring the representation of the abstract notion of the next value based on the previous ones. The simulated signal was generated by forecasting a random value and re-feeding itself.

RESULTS AND CONCLUSIONS

The resulting generated signals are similar with the morphological expression of the originals. During the learning process, after a set of iterations, the model starts to grasp the basic morphological characteristics of the signal and later their cyclic characteristics. After training, these models' prediction are closer to the signals that trained them, specially the RESP and ECG. This synthesis mechanism has shown relevant results that inspire the use to characterize signals from other physiological sources.

摘要

背景

对生理信号进行建模既是理解也是合成生物医学信号的一项复杂任务。我们提出了一种深度学习神经网络模型,该模型通过原始信号的形态等效性来学习和合成生物信号,并对其进行了验证。这项研究可以为生物医学工程领域中在强噪声数据中进行信号重构和源检测的新型算法的创建奠定基础。

方法

本研究探索了门控循环单元(GRU)在呼吸(RESP)、肌电图(EMG)和心电图(ECG)训练中的应用。每个信号都经过预处理、分割和量化为特定数量的类别,对应于每个样本的幅度,并输入到模型中,该模型由一个嵌入式矩阵、三个 GRU 块和一个 softmax 函数组成。该网络通过调整其内部参数进行训练,根据前一个值获取下一个值的抽象概念表示。通过预测随机值并重新输入来生成模拟信号。

结果和结论

生成的信号与原始信号的形态表达相似。在学习过程中,经过一组迭代后,模型开始掌握信号的基本形态特征,然后是它们的循环特征。训练后,这些模型的预测与训练它们的信号更加接近,特别是 RESP 和 ECG。这种合成机制已经显示出相关的结果,为使用其他生理源的信号特征提供了启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d46b/5613402/db5ad3fdc2b3/12938_2017_405_Fig1_HTML.jpg

相似文献

1
Biosignals learning and synthesis using deep neural networks.
Biomed Eng Online. 2017 Sep 25;16(1):115. doi: 10.1186/s12938-017-0405-0.
2
Deep Learning for Robust Decomposition of High-Density Surface EMG Signals.
IEEE Trans Biomed Eng. 2021 Feb;68(2):526-534. doi: 10.1109/TBME.2020.3006508. Epub 2021 Jan 20.
3
Electromyography Parameter Variations with Electrocardiography Noise.
Sensors (Basel). 2022 Aug 9;22(16):5948. doi: 10.3390/s22165948.
4
Accurate deep neural network model to detect cardiac arrhythmia on more than 10,000 individual subject ECG records.
Comput Methods Programs Biomed. 2020 Dec;197:105740. doi: 10.1016/j.cmpb.2020.105740. Epub 2020 Sep 8.
5
Interpretation of Electrocardiogram Heartbeat by CNN and GRU.
Comput Math Methods Med. 2021 Aug 29;2021:6534942. doi: 10.1155/2021/6534942. eCollection 2021.
6
Study of the Few-Shot Learning for ECG Classification Based on the PTB-XL Dataset.
Sensors (Basel). 2022 Jan 25;22(3):904. doi: 10.3390/s22030904.
7
DeepSeg: Deep Segmental Denoising Neural Network for Seismic Data.
IEEE Trans Neural Netw Learn Syst. 2023 Jul;34(7):3397-3404. doi: 10.1109/TNNLS.2022.3205421. Epub 2023 Jul 6.
9
Learning low-dose CT degradation from unpaired data with flow-based model.
Med Phys. 2022 Dec;49(12):7516-7530. doi: 10.1002/mp.15886. Epub 2022 Aug 8.

引用本文的文献

1
ECG Forecasting System Based on Long Short-Term Memory.
Bioengineering (Basel). 2024 Jan 17;11(1):89. doi: 10.3390/bioengineering11010089.
2
Classification of ECG signal using FFT based improved Alexnet classifier.
PLoS One. 2022 Sep 27;17(9):e0274225. doi: 10.1371/journal.pone.0274225. eCollection 2022.
3
Deep Conviction Systems for Biomedical Applications Using Intuiting Procedures With Cross Point Approach.
Front Public Health. 2022 May 23;10:909628. doi: 10.3389/fpubh.2022.909628. eCollection 2022.
4
Time-frequency time-space LSTM for robust classification of physiological signals.
Sci Rep. 2021 Mar 25;11(1):6936. doi: 10.1038/s41598-021-86432-7.
6
ECG Biometrics Using Deep Learning and Relative Score Threshold Classification.
Sensors (Basel). 2020 Jul 22;20(15):4078. doi: 10.3390/s20154078.
7
Deep Learning on 1-D Biosignals: a Taxonomy-based Survey.
Yearb Med Inform. 2018 Aug;27(1):98-109. doi: 10.1055/s-0038-1667083. Epub 2018 Aug 29.

本文引用的文献

1
Long-Term Recurrent Convolutional Networks for Visual Recognition and Description.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):677-691. doi: 10.1109/TPAMI.2016.2599174. Epub 2016 Sep 1.
2
LSTM: A Search Space Odyssey.
IEEE Trans Neural Netw Learn Syst. 2017 Oct;28(10):2222-2232. doi: 10.1109/TNNLS.2016.2582924. Epub 2016 Jul 8.
3
ECG Denoising Using Marginalized Particle Extended Kalman Filter With an Automatic Particle Weighting Strategy.
IEEE J Biomed Health Inform. 2017 May;21(3):635-644. doi: 10.1109/JBHI.2016.2582340. Epub 2016 Jun 20.
4
Adaptive Dictionary Reconstruction for Compressed Sensing of ECG Signals.
IEEE J Biomed Health Inform. 2017 May;21(3):645-654. doi: 10.1109/JBHI.2016.2531182. Epub 2016 Feb 18.
5
Deep learning in neural networks: an overview.
Neural Netw. 2015 Jan;61:85-117. doi: 10.1016/j.neunet.2014.09.003. Epub 2014 Oct 13.
6
A novel connectionist system for unconstrained handwriting recognition.
IEEE Trans Pattern Anal Mach Intell. 2009 May;31(5):855-68. doi: 10.1109/TPAMI.2008.137.
8
Framewise phoneme classification with bidirectional LSTM and other neural network architectures.
Neural Netw. 2005 Jun-Jul;18(5-6):602-10. doi: 10.1016/j.neunet.2005.06.042.
9
[Hilbert transform-based modelling of EKG].
Med Tekh. 2005 May-Jun(3):36-40.
10
A dynamical model for generating synthetic electrocardiogram signals.
IEEE Trans Biomed Eng. 2003 Mar;50(3):289-94. doi: 10.1109/TBME.2003.808805.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验