Suppr超能文献

正常人和脑瘤患者头皮 EEG 的非线性分析。

Nonlinear analysis of scalp EEGs from normal and brain tumour subjects.

机构信息

Department of Electronics and Communication Engineering, College of Engineering, Guindy, Anna University, Chennai, 600 025, Tamil Nadu, India.

出版信息

Biomed Tech (Berl). 2020 Nov 30;66(2):115-123. doi: 10.1515/bmt-2020-0035. Print 2021 Apr 27.

Abstract

Measurement of features from the chaos theory or as popularly known, the concept of nonlinear dynamics, as indicatives of several pathological conditions and cognition states using the electroencephalography (EEG) signal is very popular. In this paper, the analysis of scalp EEG signals of normal subjects and brain tumour patients using the nonlinear dynamic features has been presented. The nonlinear dynamic features that represent the dimensional and waveform complexities of the signal being analyzed have been considered. The statistical analysis of the selected nonlinear dynamic features has been presented. The results show that the nonlinear dynamic features significantly discriminate the brain tumour group from the normal group.

摘要

使用脑电图 (EEG) 信号来测量混沌理论或俗称的非线性动力学特征,以作为几种病理状况和认知状态的指示物,这在医学领域非常流行。本文提出了使用非线性动力学特征分析正常受试者和脑肿瘤患者的头皮 EEG 信号。考虑了代表被分析信号的维度和波形复杂性的非线性动力学特征。还呈现了所选非线性动态特征的统计分析。结果表明,非线性动态特征可以显著区分脑肿瘤组和正常组。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验