Suppr超能文献

基于滑动窗口的深度集成系统用于乳腺癌分类。

Sliding window based deep ensemble system for breast cancer classification.

作者信息

Alqudah Amin, Alqudah Ali Mohammad

机构信息

Department of Computer Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan.

Department of Biomedical Systems and Informatics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan.

出版信息

J Med Eng Technol. 2021 May;45(4):313-323. doi: 10.1080/03091902.2021.1896814. Epub 2021 Mar 26.

Abstract

Breast cancer is a severe problem for women around the world especially in developing countries, according to recent reports from the World Health Organization (WHO). High accuracy and early detection of breast cancer reduces the mortality rate, in the other hand, recognition of breast cancer is a complicated issue. Various studies and methods have been carried out to overcome this problem and to obtain accurate screening of breast cancer. One of the most recent methods with high performance is deep learning; it has been used to classify breast cancer using mammograms or histopathological images. This paper proposes a new using the concept of sliding window, and using the ensemble of four pre-trained convolutional neural networks (CNN) in order to classify breast cancer into eight classes. In this study, each image produces 4 non-overlapped sliding windows which are fed to GoogleNet, AlexNet, ResNet50, and DenseNet-201 CNNs, and an ensemble is then done to find the major class of each window, the ensemble is then applied again to find the class of the whole histopathological image. Breast Cancer Histopathological Database (BreakHis) database has been employed in this paper with eight classes (Adenosis, Ductal Carcinoma, Fibroadenoma, Lobular Carcinoma, Mucinous Carcinoma Papillary Carcinoma, Phyllodes Tumour, Tubular Adenoma). The proposed method is applied to four magnification cases: 40x, 100x, 200x, and 400x images. The proposed ensemble technique achieved an accuracy of 99.3325%. The results of the proposed system are comparable to recent studies results.

摘要

根据世界卫生组织(WHO)最近的报告,乳腺癌是全球女性面临的一个严重问题,在发展中国家尤为如此。乳腺癌的高精度早期检测可降低死亡率,另一方面,乳腺癌的识别是一个复杂的问题。人们已经开展了各种研究并采用了多种方法来克服这一问题,以实现对乳腺癌的准确筛查。深度学习是目前性能最高的方法之一;它已被用于通过乳房X光照片或组织病理学图像对乳腺癌进行分类。本文提出了一种新方法,利用滑动窗口概念,并使用四个预训练卷积神经网络(CNN)的集成,以便将乳腺癌分为八类。在本研究中,每张图像生成4个不重叠的滑动窗口,这些窗口被输入到谷歌网络(GoogleNet)、亚历克斯网络(AlexNet)、残差网络50(ResNet50)和密集连接网络201(DenseNet - 201)这几个CNN中,然后进行集成以确定每个窗口的主要类别,接着再次应用集成来确定整个组织病理学图像的类别。本文使用了乳腺癌组织病理学数据库(BreakHis),该数据库有八类(腺病、导管癌、纤维腺瘤、小叶癌、黏液癌、乳头状癌、叶状肿瘤、管状腺瘤)。所提出的方法应用于四种放大倍数的病例:40倍、100倍、200倍和400倍的图像。所提出的集成技术实现了99.3325%的准确率。所提系统的结果与近期研究结果相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验