Suppr超能文献

基于深度语义特征和灰度共生矩阵的乳腺癌组织病理图像分类。

Breast cancer histopathological images classification based on deep semantic features and gray level co-occurrence matrix.

机构信息

Department of Mathematics, Taiyuan Normal University, Taiyuan, China.

School of Information and Communication Engineering, North University of China, Taiyuan, China.

出版信息

PLoS One. 2022 May 5;17(5):e0267955. doi: 10.1371/journal.pone.0267955. eCollection 2022.

Abstract

Breast cancer is regarded as the leading killer of women today. The early diagnosis and treatment of breast cancer is the key to improving the survival rate of patients. A method of breast cancer histopathological images recognition based on deep semantic features and gray level co-occurrence matrix (GLCM) features is proposed in this paper. Taking the pre-trained DenseNet201 as the basic model, part of the convolutional layer features of the last dense block are extracted as the deep semantic features, which are then fused with the three-channel GLCM features, and the support vector machine (SVM) is used for classification. For the BreaKHis dataset, we explore the classification problems of magnification specific binary (MSB) classification and magnification independent binary (MIB) classification, and compared the performance with the seven baseline models of AlexNet, VGG16, ResNet50, GoogLeNet, DenseNet201, SqueezeNet and Inception-ResNet-V2. The experimental results show that the method proposed in this paper performs better than the pre-trained baseline models in MSB and MIB classification problems. The highest image-level recognition accuracy of 40×, 100×, 200×, 400× is 96.75%, 95.21%, 96.57%, and 93.15%, respectively. And the highest patient-level recognition accuracy of the four magnifications is 96.33%, 95.26%, 96.09%, and 92.99%, respectively. The image-level and patient-level recognition accuracy for MIB classification is 95.56% and 95.54%, respectively. In addition, the recognition accuracy of the method in this paper is comparable to some state-of-the-art methods.

摘要

乳腺癌被认为是当今女性的头号杀手。早期诊断和治疗乳腺癌是提高患者生存率的关键。本文提出了一种基于深度语义特征和灰度共生矩阵(GLCM)特征的乳腺癌组织病理图像识别方法。以预训练的 DenseNet201 为基础模型,提取最后一个密集块的部分卷积层特征作为深度语义特征,然后与三通道 GLCM 特征融合,使用支持向量机(SVM)进行分类。针对 BreaKHis 数据集,我们探讨了放大特定二进制(MSB)分类和放大独立二进制(MIB)分类的分类问题,并与 AlexNet、VGG16、ResNet50、GoogLeNet、DenseNet201、SqueezeNet 和 Inception-ResNet-V2 等七种基线模型的性能进行了比较。实验结果表明,本文提出的方法在 MSB 和 MIB 分类问题上的性能优于预训练的基线模型。在 40×、100×、200×、400×四个放大倍数下的图像级识别准确率分别达到 96.75%、95.21%、96.57%和 93.15%。四个放大倍数下的患者级识别准确率分别达到 96.33%、95.26%、96.09%和 92.99%。MIB 分类的图像级和患者级识别准确率分别为 95.56%和 95.54%。此外,本文方法的识别准确率可与一些最先进的方法相媲美。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ec4/9070886/c1ff4ffc9648/pone.0267955.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验