Labanti Chiara, Sung Min Jae, Luke Joel, Kwon Sooncheol, Kumar Rhea, Hong Jisu, Kim Jehan, Bakulin Artem A, Kwon Soon-Ki, Kim Yun-Hi, Kim Ji-Seon
Department of Physics & Centre for Processable Electronics, Imperial College London, London SW7 2AZ, United Kingdom.
Department of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University, Jinju 660-701, South Korea.
ACS Nano. 2021 Apr 27;15(4):7700-7712. doi: 10.1021/acsnano.1c01345. Epub 2021 Mar 26.
Non-fullerene acceptors (NFAs) for organic solar cells (OSCs) have significantly developed over the past five years with continuous improvements in efficiency now over 18%. However, a key challenge still remains in order to fully realize their commercialization potential: the need to extend device lifetime and to control degradation mechanisms. Herein, we investigate the effect of two different molecular engineering routes on the widely utilized ITIC NFA, to tune its optoelectronic properties and interactions with the donor polymer in photoactive blends. Heavier selenium (Se) atoms substitute sulfur (S) atoms in the NFA core in either outer or inner positions, and methyl chains are attached to the end groups. By investigating the effects of these structural modifications on the long-term operational stability of bulk-heterojunction OSC devices, we identify outer selenation as a powerful strategy to significantly increase device lifetime compared to ITIC. Combining outer selenation and methylation results in an impressive 95% of the initial OSC efficiency being retained after 450 h under operating conditions, with an exceptionally long projected half-lifetime of 5600 h compared to 400 h for ITIC. We find that the heavier and larger Se atoms at outer-core positions rigidify the molecular structure to form highly crystalline films with low conformational energetic disorder. It further enhances charge delocalization over the molecule, promoting strong intermolecular interactions among acceptor molecules. Upon methylation, this strong intermolecular interaction stabilizes acceptor domains in blends to be resilient to light-induced morphological changes, thereby leading to superior device stability. Our results highlight the crucial role of NFA molecular structure for OSC operational stability and provide important NFA design rules heteroatom position and end-group control.
在过去五年中,用于有机太阳能电池(OSC)的非富勒烯受体(NFA)取得了显著进展,效率持续提高,目前已超过18%。然而,要充分实现其商业化潜力,仍面临一个关键挑战:需要延长器件寿命并控制降解机制。在此,我们研究了两种不同分子工程路线对广泛使用的ITIC NFA的影响,以调节其光电性能以及与光活性共混物中供体聚合物的相互作用。较重的硒(Se)原子在NFA核的外部或内部位置取代硫(S)原子,并将甲基链连接到端基上。通过研究这些结构修饰对体异质结OSC器件长期运行稳定性的影响,我们发现与ITIC相比,外部硒化是一种显著提高器件寿命的有效策略。将外部硒化和甲基化相结合,在运行条件下450小时后,初始OSC效率仍能保持令人印象深刻的95%,预计半衰期长达5600小时,而ITIC为400小时。我们发现,位于核外位置的较重且较大的Se原子使分子结构刚性化,形成具有低构象能量无序的高度结晶薄膜。这进一步增强了电荷在分子上的离域,促进了受体分子之间强烈的分子间相互作用。甲基化后,这种强烈的分子间相互作用使共混物中的受体域稳定,对光诱导的形态变化具有弹性,从而导致卓越的器件稳定性。我们的结果突出了NFA分子结构对OSC运行稳定性的关键作用,并提供了重要的NFA设计规则——杂原子位置和端基控制。