Suppr超能文献

新冠疫情期间学生心理健康的数字化表型分析:对 100 名大学生的观察性研究。

Digital phenotyping of student mental health during COVID-19: an observational study of 100 college students.

机构信息

Division of Digital Psychiatry, Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

J Am Coll Health. 2023 Apr;71(3):736-748. doi: 10.1080/07448481.2021.1905650. Epub 2021 Mar 26.

Abstract

This study assessed the feasibility of capturing smartphone based digital phenotyping data in college students during the COVID-19 pandemic with the goal of understanding how digital biomarkers of behavior correlate with mental health. Participants were 100 students enrolled in 4-year universities. Each participant attended a virtual visit to complete a series of gold-standard mental health assessments, and then used a mobile app for 28 days to complete mood assessments and allow for passive collection of GPS, accelerometer, phone call, and screen time data. Students completed another virtual visit at the end of the study to collect a second round of mental health assessments. In-app daily mood assessments were strongly correlated with their corresponding gold standard clinical assessment. Sleep variance among students was correlated to depression scores (ρ = .28) and stress scores (ρ = .27). Digital Phenotyping among college students is feasible on both an individual and a sample level. Studies with larger sample sizes are necessary to understand population trends, but there are practical applications of the data today.

摘要

本研究旨在评估在 COVID-19 大流行期间,通过智能手机采集大学生数字表型数据的可行性,以期了解行为的数字生物标志物与心理健康之间的相关性。参与者为 100 名入读四年制大学的学生。每位参与者都参加了一次虚拟访问,以完成一系列黄金标准的心理健康评估,然后使用移动应用程序进行 28 天的情绪评估,并允许被动收集 GPS、加速度计、电话和屏幕时间数据。在研究结束时,学生们进行了另一次虚拟访问,以收集第二轮心理健康评估。应用内每日情绪评估与相应的黄金标准临床评估高度相关。学生的睡眠差异与抑郁评分(ρ=0.28)和压力评分(ρ=0.27)相关。大学生的数字表型在个体和样本水平上都是可行的。需要更大样本量的研究来了解人口趋势,但目前这些数据已经有实际应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验