Suppr超能文献

利用智能手机传感器数据检测和预测年轻人(12 - 25岁)的抑郁和焦虑:一项范围综述。

Use of smartphone sensor data in detecting and predicting depression and anxiety in young people (12-25 years): A scoping review.

作者信息

Beames Joanne R, Han Jin, Shvetcov Artur, Zheng Wu Yi, Slade Aimy, Dabash Omar, Rosenberg Jodie, O'Dea Bridianne, Kasturi Suranga, Hoon Leonard, Whitton Alexis E, Christensen Helen, Newby Jill M

机构信息

Black Dog Institute, University of New South Wales, Sydney, NSW, Australia.

Center for Contextual Psychiatry, Department of Neurosciences, KU Leuven, Belgium.

出版信息

Heliyon. 2024 Jul 30;10(15):e35472. doi: 10.1016/j.heliyon.2024.e35472. eCollection 2024 Aug 15.

Abstract

Digital phenotyping is a promising method for advancing scalable detection and prediction methods in mental health research and practice. However, little is known about how digital phenotyping data are used to make inferences about youth mental health. We conducted a scoping review of 35 studies to better understand how passive sensing (e.g., Global Positioning System, microphone etc) and electronic usage data (e.g., social media use, device activity etc) collected via smartphones are used in detecting and predicting depression and/or anxiety in young people between 12 and 25 years-of-age. GPS and/or Wifi association logs and accelerometers were the most used sensors, although a wide variety of low-level features were extracted and computed (e.g., transition frequency, time spent in specific locations, uniformity of movement). Mobility and sociability patterns were explored in more studies compared to other behaviours such as sleep, phone use, and circadian movement. Studies used machine learning, statistical regression, and correlation analyses to examine relationships between variables. Results were mixed, but machine learning indicated that models using feature combinations (e.g., mobility, sociability, and sleep features) were better able to predict and detect symptoms of youth anxiety and/or depression when compared to models using single features (e.g., transition frequency). There was inconsistent reporting of age, gender, attrition, and phone characteristics (e.g., operating system, models), and all studies were assessed to have moderate to high risk of bias. To increase translation potential for clinical practice, we recommend the development of a standardised reporting framework to improve transparency and replicability of methodology.

摘要

数字表型分析是一种很有前景的方法,可用于推进心理健康研究和实践中的可扩展检测与预测方法。然而,对于如何利用数字表型分析数据来推断青少年心理健康,我们知之甚少。我们对35项研究进行了范围综述,以更好地了解通过智能手机收集的被动感知数据(如全球定位系统、麦克风等)和电子使用数据(如社交媒体使用、设备活动等)如何用于检测和预测12至25岁年轻人的抑郁和/或焦虑。全球定位系统和/或无线网络关联日志以及加速度计是使用最多的传感器,不过也提取并计算了各种各样的低层次特征(如转换频率、在特定地点花费的时间、运动的均匀性)。与睡眠、手机使用和昼夜节律运动等其他行为相比,更多研究探讨了移动性和社交模式。研究使用机器学习、统计回归和相关性分析来检验变量之间的关系。结果参差不齐,但机器学习表明,与使用单一特征(如转换频率)的模型相比,使用特征组合(如移动性、社交性和睡眠特征)的模型在预测和检测青少年焦虑和/或抑郁症状方面表现更佳。关于年龄、性别、损耗率和手机特征(如操作系统、型号)的报告并不一致,并且所有研究都被评估为存在中度至高风险的偏差。为了提高临床实践的转化潜力,我们建议制定一个标准化的报告框架,以提高方法的透明度和可重复性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5684/11334877/931c0d1f34ac/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验