Suppr超能文献

使用基于智能手机的数字表型测量慢性病的环境和行为驱动因素:嵌入在 2 项前瞻性成人队列中的密集纵向观察性移动健康子研究。

Measuring Environmental and Behavioral Drivers of Chronic Diseases Using Smartphone-Based Digital Phenotyping: Intensive Longitudinal Observational mHealth Substudy Embedded in 2 Prospective Cohorts of Adults.

机构信息

Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States.

Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States.

出版信息

JMIR Public Health Surveill. 2024 Oct 11;10:e55170. doi: 10.2196/55170.

Abstract

BACKGROUND

Previous studies investigating environmental and behavioral drivers of chronic disease have often had limited temporal and spatial data coverage. Smartphone-based digital phenotyping mitigates the limitations of these studies by using intensive data collection schemes that take advantage of the widespread use of smartphones while allowing for less burdensome data collection and longer follow-up periods. In addition, smartphone apps can be programmed to conduct daily or intraday surveys on health behaviors and psychological well-being.

OBJECTIVE

The aim of this study was to investigate the feasibility and scalability of embedding smartphone-based digital phenotyping in large epidemiological cohorts by examining participant adherence to a smartphone-based data collection protocol in 2 ongoing nationwide prospective cohort studies.

METHODS

Participants (N=2394) of the Beiwe Substudy of the Nurses' Health Study 3 and Growing Up Today Study were followed over 1 year. During this time, they completed questionnaires every 10 days delivered via the Beiwe smartphone app covering topics such as emotions, stress and enjoyment, physical activity, access to green spaces, pets, diet (vegetables, meats, beverages, nuts and dairy, and fruits), sleep, and sitting. These questionnaires aimed to measure participants' key health behaviors to combine them with objectively assessed high-resolution GPS and accelerometer data provided by participants during the same period.

RESULTS

Between July 2021 and June 2023, we received 11.1 TB of GPS and accelerometer data from 2394 participants and 23,682 survey responses. The average follow-up time for each participant was 214 (SD 148) days. During this period, participants provided an average of 14.8 (SD 5.9) valid hours of GPS data and 13.2 (SD 4.8) valid hours of accelerometer data. Using a 10-hour cutoff, we found that 51.46% (1232/2394) and 53.23% (1274/2394) of participants had >50% of valid data collection days for GPS and accelerometer data, respectively. In addition, each participant submitted an average of 10 (SD 11) surveys during the same period, with a mean response rate of 36% across all surveys (SD 17%; median 41%). After initial processing of GPS and accelerometer data, we also found that participants spent an average of 14.6 (SD 7.5) hours per day at home and 1.6 (SD 1.6) hours per day on trips. We also recorded an average of 1046 (SD 1029) steps per day.

CONCLUSIONS

In this study, smartphone-based digital phenotyping was used to collect intensive longitudinal data on lifestyle and behavioral factors in 2 well-established prospective cohorts. Our assessment of adherence to smartphone-based data collection protocols over 1 year suggests that adherence in our study was either higher or similar to most previous studies with shorter follow-up periods and smaller sample sizes. Our efforts resulted in a large dataset on health behaviors that can be linked to spatial datasets to examine environmental and behavioral drivers of chronic disease.

摘要

背景

先前研究慢性疾病的环境和行为驱动因素的研究往往具有有限的时间和空间数据覆盖范围。基于智能手机的数字表型学通过利用智能手机的广泛使用来进行密集的数据收集方案,从而减轻了这些研究的局限性,同时允许进行更轻松的数据收集和更长的随访期。此外,智能手机应用程序可以编程进行日常或日内健康行为和心理幸福感调查。

目的

本研究旨在通过检查两项正在进行的全国前瞻性队列研究中参与者对基于智能手机的数据收集协议的依从性,来研究将基于智能手机的数字表型学嵌入大型流行病学队列中的可行性和可扩展性。

方法

参加护士健康研究 3 号贝维子研究和今日成长研究的 2394 名参与者在 1 年内接受随访。在此期间,他们每 10 天通过贝维智能手机应用程序完成一次问卷,涵盖情绪、压力和愉悦感、身体活动、接触绿色空间、宠物、饮食(蔬菜、肉类、饮料、坚果和奶制品、水果)、睡眠和坐姿等主题。这些问卷旨在测量参与者的关键健康行为,以便将其与参与者同期提供的客观评估的高分辨率 GPS 和加速度计数据相结合。

结果

在 2021 年 7 月至 2023 年 6 月期间,我们从 2394 名参与者那里收到了 11.1TB 的 GPS 和加速度计数据以及 23682 次调查回复。每个参与者的平均随访时间为 214(SD 148)天。在此期间,参与者平均提供了 14.8(SD 5.9)小时有效的 GPS 数据和 13.2(SD 4.8)小时有效的加速度计数据。使用 10 小时的截止值,我们发现 51.46%(1232/2394)和 53.23%(1274/2394)的参与者分别有>50%的 GPS 和加速度计数据采集日有有效数据。此外,在此期间,每位参与者平均提交了 10(SD 11)次调查,所有调查的平均回复率为 36%(SD 17%;中位数为 41%)。在对 GPS 和加速度计数据进行初步处理后,我们还发现参与者平均每天在家中花费 14.6(SD 7.5)小时,每天在外出上花费 1.6(SD 1.6)小时。我们还记录了平均每天 1046(SD 1029)步。

结论

在这项研究中,基于智能手机的数字表型学被用于在两个成熟的前瞻性队列中收集生活方式和行为因素的密集纵向数据。我们对 1 年内基于智能手机的数据收集协议依从性的评估表明,我们的研究中的依从性要么更高,要么与大多数以前的研究相似,这些研究的随访期更短,样本量更小。我们的努力产生了一个关于健康行为的大型数据集,可以将其与空间数据集相关联,以研究慢性疾病的环境和行为驱动因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验