Suppr超能文献

SG-GAN:用于点云拓扑部分生成的对抗性自注意力图卷积网络

SG-GAN: Adversarial Self-Attention GCN for Point Cloud Topological Parts Generation.

作者信息

Li Yushi, Baciu George

出版信息

IEEE Trans Vis Comput Graph. 2022 Oct;28(10):3499-3512. doi: 10.1109/TVCG.2021.3069195. Epub 2022 Sep 1.

Abstract

Point clouds are fundamental in the representation of 3D objects. However, they can also be highly unstructured and irregular. This makes it difficult to directly extend 2D generative models to three-dimensional space. In this article, we cast the problem of point cloud generation as a topological representation learning problem. In order to capture the representative features of 3D shapes in the latent space, we propose a hierarchical mixture model that integrates self-attention with an inference tree structure for constructing a point cloud generator. Based on this, we design a novel Generative Adversarial Network (GAN) architecture that is capable of generating recognizable point clouds in an unsupervised manner. The proposed adversarial framework (SG-GAN) relies on self-attention mechanism and Graph Convolution Network (GCN) to hierarchically infer the latent topology of 3D shapes. Embedding and transferring the global topology information in a tree framework allows our model to capture and enhance the structural connectivity. Furthermore, the proposed architecture endows our model with partially generating 3D structures. Finally, we propose two gradient penalty methods to stabilize the training of SG-GAN and overcome the possible mode collapse of GAN networks. To demonstrate the performance of our model, we present both quantitative and qualitative evaluations and show that SG-GAN is more efficient in training and it exceeds the state-of-the-art in 3D point cloud generation.

摘要

点云是三维物体表示的基础。然而,它们也可能高度无结构且不规则。这使得难以直接将二维生成模型扩展到三维空间。在本文中,我们将点云生成问题视为拓扑表示学习问题。为了在潜在空间中捕捉三维形状的代表性特征,我们提出了一种分层混合模型,该模型将自注意力与推理树结构相结合以构建点云生成器。基于此,我们设计了一种新颖的生成对抗网络(GAN)架构,它能够以无监督的方式生成可识别的点云。所提出的对抗框架(SG-GAN)依靠自注意力机制和图卷积网络(GCN)来分层推断三维形状的潜在拓扑。在树框架中嵌入和传递全局拓扑信息使我们的模型能够捕捉并增强结构连通性。此外,所提出的架构赋予我们的模型部分生成三维结构的能力。最后,我们提出了两种梯度惩罚方法来稳定SG-GAN的训练并克服GAN网络可能出现的模式崩溃问题。为了展示我们模型的性能,我们进行了定量和定性评估,并表明SG-GAN在训练中更高效,且在三维点云生成方面超越了当前的先进水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验