Suppr超能文献

提高表皮葡萄球菌血流分离株致病性的诊断预测。

Improved diagnostic prediction of the pathogenicity of bloodstream isolates of Staphylococcus epidermidis.

机构信息

Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, United States of America.

Department of Pathology, University of Michigan, Ann Arbor, MI, United States of America.

出版信息

PLoS One. 2021 Mar 26;16(3):e0241457. doi: 10.1371/journal.pone.0241457. eCollection 2021.

Abstract

With an estimated 440,000 active cases occurring each year, medical device associated infections pose a significant burden on the US healthcare system, costing about $9.8 billion in 2013. Staphylococcus epidermidis is the most common cause of these device-associated infections, which typically involve isolates that are multi-drug resistant and possess multiple virulence factors. S. epidermidis is also frequently a benign contaminant of otherwise sterile blood cultures. Therefore, tests that distinguish pathogenic from non-pathogenic isolates would improve the accuracy of diagnosis and prevent overuse/misuse of antibiotics. Attempts to use multi-locus sequence typing (MLST) with machine learning for this purpose had poor accuracy (~73%). In this study we sought to improve the diagnostic accuracy of predicting pathogenicity by focusing on phenotypic markers (i.e., antibiotic resistance, growth fitness in human plasma, and biofilm forming capacity) and the presence of specific virulence genes (i.e., mecA, ses1, and sdrF). Commensal isolates from healthy individuals (n = 23), blood culture contaminants (n = 21), and pathogenic isolates considered true bacteremia (n = 54) were used. Multiple machine learning approaches were applied to characterize strains as pathogenic vs non-pathogenic. The combination of phenotypic markers and virulence genes improved the diagnostic accuracy to 82.4% (sensitivity: 84.9% and specificity: 80.9%). Oxacillin resistance was the most important variable followed by growth rate in plasma. This work shows promise for the addition of phenotypic testing in clinical diagnostic applications.

摘要

每年估计有 44 万例活跃病例,医疗器械相关感染给美国医疗保健系统带来了巨大负担,2013 年的成本约为 98 亿美元。表皮葡萄球菌是这些器械相关感染的最常见原因,这些感染通常涉及多药耐药且具有多种毒力因子的分离株。表皮葡萄球菌也是通常无菌血液培养物的良性污染物。因此,区分致病和非致病分离株的测试将提高诊断的准确性,并防止抗生素的过度使用/误用。尝试使用基于多位点序列分型 (MLST) 和机器学习来实现这一目标,其准确性较差(约 73%)。在这项研究中,我们试图通过关注表型标志物(即抗生素耐药性、在人血浆中的生长适应性和生物膜形成能力)和特定毒力基因(即 mecA、ses1 和 sdrF)的存在来提高预测致病性的诊断准确性。使用来自健康个体(n=23)、血液培养物污染物(n=21)和被认为是真正菌血症的致病性分离株(n=54)的共生分离株。应用多种机器学习方法将菌株特征化为致病性与非致病性。表型标志物和毒力基因的组合将诊断准确性提高到 82.4%(敏感性:84.9%,特异性:80.9%)。耐苯唑西林是最重要的变量,其次是在血浆中的生长速度。这项工作为在临床诊断应用中添加表型测试提供了希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6de6/7997010/792cf73aacc0/pone.0241457.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验