Suppr超能文献

基于矢状位脊柱磁共振成像对阻塞性睡眠呼吸暂停相关器官进行深度级联分割。

A deep cascaded segmentation of obstructive sleep apnea-relevant organs from sagittal spine MRI.

作者信息

Ivanovska Tatyana, Daboul Amro, Kalentev Oleksandr, Hosten Norbert, Biffar Reiner, Völzke Henry, Wörgötter Florentin

机构信息

Department of Computational Neuroscience, Georg-August-University, Friedrich-Hund Platz, 1, 37077, Göttingen, Germany.

Department of Prosthodontics, Gerodontology and Biomaterials, University Medicine Greifswald, Fleischmannstr. 42-44, 17475, Greifswald, Germany.

出版信息

Int J Comput Assist Radiol Surg. 2021 Apr;16(4):579-588. doi: 10.1007/s11548-021-02333-0. Epub 2021 Mar 26.

Abstract

PURPOSE

The main purpose of this work was to develop an efficient approach for segmentation of structures that are relevant for diagnosis and treatment of obstructive sleep apnea syndrome (OSAS), namely pharynx, tongue, and soft palate, from mid-sagittal magnetic resonance imaging (MR) data. This framework will be applied to big data acquired within an on-going epidemiological study from a general population.

METHODS

A deep cascaded framework for subsequent segmentation of pharynx, tongue, and soft palate is presented. The pharyngeal structure was segmented first, since the airway was clearly visible in the T1-weighted sequence. Thereafter, it was used as an anatomical landmark for tongue location. Finally, the soft palate region was extracted using segmented tongue and pharynx structures and used as input for a deep network. In each segmentation step, a UNet-like architecture was applied.

RESULTS

The result assessment was performed qualitatively by comparing the region boundaries obtained from the expert to the framework results and quantitatively using the standard Dice coefficient metric. Additionally, cross-validation was applied to ensure that the framework performance did not depend on the specific selection of the validation set. The average Dice coefficients on the test set were [Formula: see text], [Formula: see text], and [Formula: see text] for tongue, pharynx, and soft palate tissues, respectively. The results were similar to other approaches and consistent with expert readings.

CONCLUSION

Due to high speed and efficiency, the framework will be applied for big epidemiological data with thousands of participants acquired within the Study of Health in Pomerania as well as other epidemiological studies to provide information on the anatomical structures and aspects that constitute important risk factors to the OSAS development.

摘要

目的

这项工作的主要目的是开发一种有效的方法,用于从矢状面磁共振成像(MR)数据中分割出与阻塞性睡眠呼吸暂停综合征(OSAS)诊断和治疗相关的结构,即咽部、舌头和软腭。该框架将应用于在一项正在进行的针对普通人群的流行病学研究中获取的大数据。

方法

提出了一种用于后续分割咽部、舌头和软腭的深度级联框架。由于气道在T1加权序列中清晰可见,因此首先对咽部结构进行分割。此后,将其用作定位舌头的解剖标志。最后,使用分割出的舌头和咽部结构提取软腭区域,并将其用作深度网络的输入。在每个分割步骤中,都应用了类似UNet的架构。

结果

通过将专家获得区域边界与框架结果进行比较,对结果进行定性评估,并使用标准的Dice系数度量进行定量评估。此外,应用交叉验证以确保框架性能不依赖于验证集的特定选择。测试集上舌头、咽部和软腭组织的平均Dice系数分别为[公式:见原文]、[公式:见原文]和[公式:见原文]。结果与其他方法相似且与专家读数一致。

结论

由于速度快且效率高,该框架将应用于在波美拉尼亚健康研究以及其他流行病学研究中获取的包含数千名参与者的大型流行病学数据,以提供有关构成OSAS发展重要风险因素的解剖结构和方面的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce17/8052251/212e33dd2041/11548_2021_2333_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验