Suppr超能文献

基于未处理磁共振图像的阻塞性睡眠呼吸暂停上呼吸道解剖风险因素的自动分割与定量

Automatic Segmentation and Quantification of Upper Airway Anatomic Risk Factors for Obstructive Sleep Apnea on Unprocessed Magnetic Resonance Images.

机构信息

Artificial Intelligence in Biomedical Imaging Lab, Department of Radiology, University of Pennsylvania, Richards Building, 7th Fl  3700 Hamilton Walk, Philadelphia, PA 19104.

Artificial Intelligence in Biomedical Imaging Lab, Department of Radiology, University of Pennsylvania, Richards Building, 7th Fl  3700 Hamilton Walk, Philadelphia, PA 19104.

出版信息

Acad Radiol. 2023 Mar;30(3):421-430. doi: 10.1016/j.acra.2022.04.023. Epub 2022 May 21.

Abstract

RATIONALE AND OBJECTIVES

Accurate segmentation of the upper airway lumen and surrounding soft tissue anatomy, especially tongue fat, using magnetic resonance images is crucial for evaluating the role of anatomic risk factors in the pathogenesis of obstructive sleep apnea (OSA). We present a convolutional neural network to automatically segment and quantify upper airway structures that are known OSA risk factors from unprocessed magnetic resonance images.

MATERIALS AND METHODS

Four datasets (n = [31, 35, 64, 76]) with T1-weighted scans and manually delineated labels of 10 regions of interest were used for model training and validations. We investigated a modified U-Net architecture that uses multiple convolution filter sizes to achieve multi-scale feature extraction. Validations included four-fold cross-validation and leave-study-out validations to measure generalization ability of the trained models. Automatic segmentations were also used to calculate the tongue fat ratio, a biomarker of OSA. Dice coefficient, Pearson's correlation, agreement analyses, and expert-derived clinical parameters were used to evaluate segmentations and tongue fat ratio values.

RESULTS

Cross-validated mean Dice coefficient across all regions of interests and scans was 0.70 ± 0.10 with highest mean Dice coefficient in the tongue (0.89) and mandible (0.81). The accuracy was consistent across all four folds. Also, leave-study-out validations obtained comparable accuracy across uniquely acquired datasets. Segmented volumes and the derived tongue fat ratio values showed high correlation with manual measurements, with differences that were not statistically significant (p < 0.05).

CONCLUSION

High accuracy of automated segmentations indicate translational potential of the proposed method to replace time consuming manual segmentation tasks in clinical settings and large-scale research studies.

摘要

背景和目的

使用磁共振成像(MRI)准确分割上气道管腔及其周围软组织解剖结构,尤其是舌脂肪,对于评估解剖学危险因素在阻塞性睡眠呼吸暂停(OSA)发病机制中的作用至关重要。我们提出了一种卷积神经网络,用于自动分割和量化已知的 OSA 危险因素的上气道结构,这些结构来自未经处理的 MRI。

材料和方法

使用 4 个数据集(n= [31、35、64、76]),包含 T1 加权扫描和 10 个感兴趣区域的手动描绘标签,用于模型训练和验证。我们研究了一种修改后的 U-Net 架构,该架构使用多个卷积滤波器大小来实现多尺度特征提取。验证包括四折交叉验证和留一法验证,以衡量训练模型的泛化能力。自动分割还用于计算舌脂肪比,这是 OSA 的一个生物标志物。Dice 系数、Pearson 相关系数、一致性分析以及专家得出的临床参数用于评估分割和舌脂肪比值。

结果

所有感兴趣区域和扫描的交叉验证平均 Dice 系数为 0.70 ± 0.10,舌部(0.89)和下颌骨(0.81)的平均 Dice 系数最高。所有 4 个折叠的准确性都是一致的。此外,留一法验证在独特获取的数据集上获得了相当的准确性。分割体积和衍生的舌脂肪比值与手动测量值高度相关,差异无统计学意义(p < 0.05)。

结论

自动分割的高精度表明,该方法具有转化潜力,可以替代临床环境和大规模研究中耗时的手动分割任务。

相似文献

4
A deep cascaded segmentation of obstructive sleep apnea-relevant organs from sagittal spine MRI.
Int J Comput Assist Radiol Surg. 2021 Apr;16(4):579-588. doi: 10.1007/s11548-021-02333-0. Epub 2021 Mar 26.
7
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
8
9
MR Image Analytics to Characterize the Upper Airway Structure in Obese Children with Obstructive Sleep Apnea Syndrome.
PLoS One. 2016 Aug 3;11(8):e0159327. doi: 10.1371/journal.pone.0159327. eCollection 2016.

引用本文的文献

1
From Big Data to AI-Driven Decisions in Obstructive Sleep Apnea: A Narrative Review Integrating the DDPP Framework.
Nat Sci Sleep. 2025 Aug 21;17:1863-1882. doi: 10.2147/NSS.S543091. eCollection 2025.
2
Upper Airway Volume Predicts Brain Structure and Cognition in Adolescents.
Am J Respir Crit Care Med. 2025 Jun 3. doi: 10.1164/rccm.202409-1748OC.
5
Soft palate angle and basihyoid depth increase with tongue size and with body condition score in horses.
Equine Vet J. 2025 Jul;57(4):967-976. doi: 10.1111/evj.14445. Epub 2025 Jan 2.
7
Evaluating deep learning techniques for identifying tongue features in subthreshold depression: a prospective observational study.
Front Psychiatry. 2024 Aug 8;15:1361177. doi: 10.3389/fpsyt.2024.1361177. eCollection 2024.
8
Development and application of a machine learning-based predictive model for obstructive sleep apnea screening.
Front Big Data. 2024 May 16;7:1353469. doi: 10.3389/fdata.2024.1353469. eCollection 2024.
9
We Can Use Machine Learning to Predict Obstructive Sleep Apnea.
Am J Respir Crit Care Med. 2024 Jul 15;210(2):141-143. doi: 10.1164/rccm.202403-0666ED.

本文引用的文献

1
2
Effect of Weight Loss on Upper Airway Anatomy and the Apnea-Hypopnea Index. The Importance of Tongue Fat.
Am J Respir Crit Care Med. 2020 Mar 15;201(6):718-727. doi: 10.1164/rccm.201903-0692OC.
3
Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis.
Lancet Respir Med. 2019 Aug;7(8):687-698. doi: 10.1016/S2213-2600(19)30198-5. Epub 2019 Jul 9.
5
Brain tumor segmentation with Deep Neural Networks.
Med Image Anal. 2017 Jan;35:18-31. doi: 10.1016/j.media.2016.05.004. Epub 2016 May 19.
6
Deep MRI brain extraction: A 3D convolutional neural network for skull stripping.
Neuroimage. 2016 Apr 1;129:460-469. doi: 10.1016/j.neuroimage.2016.01.024. Epub 2016 Jan 22.
7
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
8
Tongue fat and its relationship to obstructive sleep apnea.
Sleep. 2014 Oct 1;37(10):1639-48. doi: 10.5665/sleep.4072.
9
Interrater reliability: the kappa statistic.
Biochem Med (Zagreb). 2012;22(3):276-82.
10
Three-dimensional segmentation of the upper airway using cone beam CT: a systematic review.
Dentomaxillofac Radiol. 2012 May;41(4):276-84. doi: 10.1259/dmfr/79433138.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验