Opt Express. 2021 Feb 1;29(3):3395-3405. doi: 10.1364/OE.412988.
Optical imaging of objects embedded within scattering media such as biological tissues suffers from the loss of resolving power. In our previous work, we proposed an approach called collective accumulation of single scattering (CASS) microscopy that attenuates this detrimental effect of multiple light scattering by combining the time-gated detection and spatial input-output correlation. In the present work, we perform a rigorous theoretical analysis on the effect of multiple light scattering to the optical transfer function of CASS microscopy. In particular, the spatial frequency-dependent signal to noise ratio (SNR) is derived depending on the intensity ratio of the single- and multiple-scattered waves. This allows us to determine the depth-dependent resolving power. We conducted experiments using a Siemens star-like target having various spatial frequency components and supported the theoretical derived SNR spectra. Our study provides a theoretical framework for understanding the effect of multiple light scattering in high-resolution and deep-tissue optical imaging.
对嵌入散射介质(如生物组织)中的物体进行光学成像是一项艰巨的任务,因为这会导致分辨率降低。在我们之前的工作中,我们提出了一种称为集体单次散射积累(CASS)显微镜的方法,通过结合时间门控检测和空间输入-输出相关来减轻多次光散射的有害影响。在目前的工作中,我们对多次光散射对 CASS 显微镜的光学传递函数的影响进行了严格的理论分析。特别是,根据单散射波和多散射波的强度比,推导出了与空间频率相关的信噪比(SNR)。这使我们能够确定与深度相关的分辨率。我们使用具有各种空间频率分量的西门子星形目标进行了实验,并支持了理论推导的 SNR 谱。我们的研究为理解高分辨率和深层组织光学成像中多次光散射的影响提供了理论框架。