Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
J Biophotonics. 2021 Jul;14(7):e202000501. doi: 10.1002/jbio.202000501. Epub 2021 Apr 7.
Optical fiber sensors can offer robust and miniaturized detection of wideband ultrasound, yielding high sensitivity and immunity to electromagnetic interference. However, the lack of cost-effective manufacturing methods prevents the disseminated use of these sensors in biomedical applications. In this study, we developed and optimized a simple method to create optical cavities with high-quality mirrors for acoustic sensing based on micro-manipulation of UV-curable optical adhesives and electroless chemical silver deposition. This approach enables the manufacturing of ultrasound sensors based on Fabry-Pérot interferometers on optical fiber tips with minimal production costs. Characterization and high-resolution optoacoustic imaging experiments show that the manufacturing process yielded a fiber sensor with a small NEP ( ) over a broad detection bandwidth (25 MHz), generally outperforming conventional piezoelectric based transducers. We discuss how the new manufacturing process leads to a high-performance acoustic detector that, due to low cost, can be used as a disposable sensor.
光纤传感器可以提供稳健且小型化的宽带超声检测,具有高灵敏度和抗电磁干扰能力。然而,缺乏具有成本效益的制造方法,阻碍了这些传感器在生物医学应用中的广泛使用。在这项研究中,我们开发并优化了一种简单的方法,通过微操作紫外光固化光学胶和化学镀银,为基于 Fabry-Pérot 干涉仪的声学传感制造具有高质量反射镜的光学空腔。这种方法可以在最小的生产成本下,在光纤尖端上制造基于法布里-珀罗干涉仪的超声传感器。特性和高分辨率光声成像实验表明,制造过程产生了一种具有小 NEP(噪声等效功率)的光纤传感器,具有较宽的检测带宽(25MHz),通常优于传统的基于压电的换能器。我们讨论了新制造工艺如何导致高性能声学探测器,由于成本低,该探测器可用作一次性传感器。