Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, CEP 66075-110, Brazil.
Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, SP, CEP 13418-900, Brazil.
Plant Physiol Biochem. 2021 May;162:581-591. doi: 10.1016/j.plaphy.2021.03.028. Epub 2021 Mar 18.
The current increase in salinity can intensify the disparity between potential and actual crop yields, thus affecting economies and food security. One of the mitigating alternatives is plant breeding via biotechnology, where advances achieved so far are significant. Considering certain aspects when developing studies related to plant breeding can determine the success and accuracy of experimental design. Besides this strategy, halophytes with intrinsic and efficient abilities against salinity can be used as models for improving the response of crops to salinity stress. As crops are mostly glycophytes, it is crucial to point out the molecular differences between these two groups of plants, which may be the key to guiding and optimizing the transformation of glycophytes with halophytic tolerance genes. Therefore, this can broaden perspectives in the trajectory of research towards the cultivation, commercialization, and consumption of salt-tolerant crops on a large scale.
当前盐度的增加可能会加剧潜在和实际作物产量之间的差距,从而影响经济和粮食安全。一种缓解方法是通过生物技术进行植物育种,迄今为止,这方面已经取得了重大进展。在开展与植物育种相关的研究时,考虑某些方面可以决定实验设计的成败和准确性。除了这种策略外,还可以利用具有内在和高效耐盐能力的盐生植物作为模型,以提高作物对盐胁迫的响应能力。由于作物大多是喜盐植物,因此必须指出这两组植物之间的分子差异,这可能是指导和优化具有耐盐性基因的喜盐植物转化的关键。因此,这可以拓宽研究方向的视角,促进耐盐作物的种植、商业化和大规模消费。