Suppr超能文献

任务依赖的异常三色觉者的对比增益。

Task-dependent contrast gain in anomalous trichromats.

机构信息

Department of Psychology, University of Nevada, Reno 1664 N Virginia St., Reno, NV 89557, USA; School of Optometry and Vision Science Graduate Group, University of California, Minor Hall, Berkeley, CA 94720, USA.

Department of Psychology, University of Nevada, Reno 1664 N Virginia St., Reno, NV 89557, USA.

出版信息

Vision Res. 2021 Jul;184:14-22. doi: 10.1016/j.visres.2021.02.003. Epub 2021 Mar 25.

Abstract

Anomalous trichromacy is a form of color vision deficiency characterized by the presence of three cone types, but with shifted spectral sensitivities for L or M cones, causing a red-green color deficiency. However, long-term adaptation to this impoverished opponent input may allow for a more normal color experience at the suprathreshold level ("compensation"). Recent experimental evidence points to the presence of compensation in some tasks. The current study used threshold detection, suprathreshold contrast matching, and a reaction-time task to compare contrast coding in normal and anomalous observers along the cardinal cone-opponent axes. Compared to color normals, anomals required more L-M contrast, but not S contrast, to detect stimuli and to match an achromatic reference stimulus. Reaction times were measured for several contrast levels along the two cone-opponent axes. Anomals had higher overall reaction times, but their reaction-time versus contrast functions could be matched to those of controls simply by scaling contrast by the detection thresholds. Anomalous participants were impaired relative to controls for L-M stimuli in all three tasks. However, the contrast losses were three times greater for thresholds and reaction times than for suprathreshold matches. These data provide evidence for compensation in anomalous trichromats, but highlight the role that the experimental task plays in revealing it.

摘要

异常三色视是一种色觉缺陷的形式,其特征是存在三种锥体细胞类型,但 L 或 M 锥体细胞的光谱敏感性发生偏移,导致红绿色觉缺陷。然而,长期适应这种贫化的对手输入可能会在阈上水平产生更正常的颜色体验(“补偿”)。最近的实验证据表明,在某些任务中存在补偿。本研究使用阈值检测、阈上对比匹配和反应时任务,比较了正常和异常观察者在主锥体细胞对手轴上的对比编码。与色觉正常者相比,异常者需要更多的 L-M 对比,但不需要 S 对比,即可检测刺激并匹配消色参考刺激。反应时间是在两个锥体细胞对手轴上的几个对比水平上测量的。异常者的总体反应时间较高,但通过将对比按检测阈值进行缩放,可以将其反应时间与对照组的反应时间进行匹配。与对照组相比,异常者在所有三个任务中对 L-M 刺激的反应都较差。然而,与阈上匹配相比,阈值和反应时间的对比损失要大三倍。这些数据为异常三色觉者的补偿提供了证据,但突出了实验任务在揭示补偿方面的作用。

相似文献

1
Task-dependent contrast gain in anomalous trichromats.
Vision Res. 2021 Jul;184:14-22. doi: 10.1016/j.visres.2021.02.003. Epub 2021 Mar 25.
2
Compensation for red-green contrast loss in anomalous trichromats.
J Vis. 2014 Nov 20;14(13):19. doi: 10.1167/14.13.19.
3
Color discrimination in anomalous trichromacy: Experiment and theory.
Vision Res. 2021 Nov;188:85-95. doi: 10.1016/j.visres.2021.05.011. Epub 2021 Jul 20.
4
Color perception and compensation in color deficiencies assessed with hue scaling.
Vision Res. 2021 Jun;183:1-15. doi: 10.1016/j.visres.2021.01.006. Epub 2021 Feb 23.
5
A study of unusual Rayleigh matches in deutan deficiency.
Vis Neurosci. 2008 May-Jun;25(3):507-16. doi: 10.1017/S0952523808080619.
6
Nonlinear cortical encoding of color predicts enhanced McCollough effects in anomalous trichromats.
Vision Res. 2023 Feb;203:108153. doi: 10.1016/j.visres.2022.108153. Epub 2022 Dec 2.
8
Adaptive Changes in Color Vision from Long-Term Filter Usage in Anomalous but Not Normal Trichromacy.
Curr Biol. 2020 Aug 3;30(15):3011-3015.e4. doi: 10.1016/j.cub.2020.05.054. Epub 2020 Jun 25.
9
Spatial visual function in anomalous trichromats: Is less more?
PLoS One. 2019 Jan 23;14(1):e0209662. doi: 10.1371/journal.pone.0209662. eCollection 2019.
10
An analytical model of the influence of cone sensitivity and numerosity on the Rayleigh match.
J Opt Soc Am A Opt Image Sci Vis. 2016 Mar;33(3):A228-37. doi: 10.1364/JOSAA.33.00A228.

引用本文的文献

1
Color contrast adaptation and compensation in color deficiencies.
J Vis. 2025 Aug 1;25(10):17. doi: 10.1167/jov.25.10.17.
2
Achromatic loci in normal and anomalous trichromats.
J Opt Soc Am A Opt Image Sci Vis. 2025 May 1;42(5):B245-B255. doi: 10.1364/JOSAA.546890.
3
Visual search for warm and cool colors.
J Opt Soc Am A Opt Image Sci Vis. 2025 May 1;42(5):B148-B154. doi: 10.1364/JOSAA.545307.
4
Calibrating Vision: Concepts and Questions.
Vision Res. 2022 Dec;201. doi: 10.1016/j.visres.2022.108131. Epub 2022 Oct 28.
5
Gaining the system: limits to compensating color deficiencies through post-receptoral gain changes.
J Opt Soc Am A Opt Image Sci Vis. 2023 Mar 1;40(3):A16-A25. doi: 10.1364/JOSAA.480035.
6
Color perception and compensation in color deficiencies assessed with hue scaling.
Vision Res. 2021 Jun;183:1-15. doi: 10.1016/j.visres.2021.01.006. Epub 2021 Feb 23.

本文引用的文献

1
Color perception and compensation in color deficiencies assessed with hue scaling.
Vision Res. 2021 Jun;183:1-15. doi: 10.1016/j.visres.2021.01.006. Epub 2021 Feb 23.
2
Color Compensation in Anomalous Trichromats Assessed with fMRI.
Curr Biol. 2021 Mar 8;31(5):936-942.e4. doi: 10.1016/j.cub.2020.11.039. Epub 2020 Dec 15.
3
Suprathreshold contrast response in normal and anomalous trichromats.
J Opt Soc Am A Opt Image Sci Vis. 2020 Apr 1;37(4):A133-A144. doi: 10.1364/JOSAA.380088.
4
Spatial visual function in anomalous trichromats: Is less more?
PLoS One. 2019 Jan 23;14(1):e0209662. doi: 10.1371/journal.pone.0209662. eCollection 2019.
5
Effects of eccentricity on color contrast.
J Opt Soc Am A Opt Image Sci Vis. 2018 Apr 1;35(4):B122-B129. doi: 10.1364/JOSAA.35.00B122.
6
Binocular facilitation of cone-specific visual evoked potentials in colour deficiency.
Clin Exp Optom. 2018 Jan;101(1):69-72. doi: 10.1111/cxo.12567. Epub 2017 Jun 21.
7
Diagnosis of Normal and Abnormal Color Vision with Cone-Specific VEPs.
Transl Vis Sci Technol. 2016 May 17;5(3):8. doi: 10.1167/tvst.5.3.8. eCollection 2016 May.
8
Color responses and their adaptation in human superior colliculus and lateral geniculate nucleus.
Neuroimage. 2016 Sep;138:211-220. doi: 10.1016/j.neuroimage.2016.04.067. Epub 2016 May 3.
9
Compensation for red-green contrast loss in anomalous trichromats.
J Vis. 2014 Nov 20;14(13):19. doi: 10.1167/14.13.19.
10
A potential mechanism for compensation in the blue-yellow visual channel.
Front Hum Neurosci. 2013 Jul 3;7:331. doi: 10.3389/fnhum.2013.00331. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验