Suppr超能文献

用于透射电子显微镜的键合从头算描述。

ab initio description of bonding for transmission electron microscopy.

作者信息

Madsen Jacob, Pennycook Timothy J, Susi Toma

机构信息

Faculty of Physics, University of Vienna, Bolzmanngasse 5, 1090 Vienna, Austria.

EMAT, University of Antwerp, Groenenborgerlaan 171, G.U.431, 2020 Antwerp, Belgium.

出版信息

Ultramicroscopy. 2021 Dec;231:113253. doi: 10.1016/j.ultramic.2021.113253. Epub 2021 Mar 16.

Abstract

The simulation of transmission electron microscopy (TEM) images or diffraction patterns is often required to interpret their contrast and extract specimen features. This is especially true for high-resolution phase-contrast imaging of materials, but electron scattering simulations based on atomistic models are widely used in materials science and structural biology. Since electron scattering is dominated by the nuclear cores, the scattering potential is typically described by the widely applied independent atom model. This approximation is fast and fairly accurate, especially for scanning TEM (STEM) annular dark-field contrast, but it completely neglects valence bonding and its effect on the transmitting electrons. However, an emerging trend in electron microscopy is to use new instrumentation and methods to extract the maximum amount of information from each electron. This is evident in the increasing popularity of techniques such as 4D-STEM combined with ptychography in materials science, and cryogenic microcrystal electron diffraction in structural biology, where subtle differences in the scattering potential may be both measurable and contain additional insights. Thus, there is increasing interest in electron scattering simulations based on electrostatic potentials obtained from first principles, mainly via density functional theory, which was previously mainly required for holography. In this Review, we discuss the motivation and basis for these developments, survey the pioneering work that has been published thus far, and give our outlook for the future. We argue that a physically better justified ab initio description of the scattering potential is both useful and viable for an increasing number of systems, and we expect such simulations to steadily gain in popularity and importance.

摘要

为了解释透射电子显微镜(TEM)图像或衍射图案的对比度并提取样品特征,常常需要对其进行模拟。对于材料的高分辨率相衬成像来说尤其如此,但是基于原子模型的电子散射模拟在材料科学和结构生物学中得到了广泛应用。由于电子散射主要由原子核主导,散射势通常由广泛应用的独立原子模型来描述。这种近似方法速度快且相当准确,特别是对于扫描透射电子显微镜(STEM)环形暗场对比度而言,但它完全忽略了价键及其对透射电子的影响。然而,电子显微镜领域的一个新趋势是使用新的仪器和方法来从每个电子中提取最大量的信息。这在材料科学中4D-STEM与叠层成像技术相结合以及结构生物学中低温微晶电子衍射等技术越来越受欢迎的情况中很明显,在这些技术中,散射势的细微差异可能既可以测量又包含额外的见解。因此,人们对基于第一性原理获得的静电势进行电子散射模拟的兴趣日益增加,主要是通过密度泛函理论,而该理论以前主要用于全息术。在这篇综述中,我们讨论了这些发展的动机和基础,综述了迄今为止已发表的开创性工作,并给出了我们对未来的展望。我们认为,对于越来越多的系统来说,对散射势进行从物理角度更合理的从头算描述既有用又可行,并且我们预计这种模拟将稳步获得更多的关注和重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验